These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11955231)

  • 21. Cavity-based single atom preparation and high-fidelity hyperfine state readout.
    Gehr R; Volz J; Dubois G; Steinmetz T; Colombe Y; Lev BL; Long R; Estève J; Reichel J
    Phys Rev Lett; 2010 May; 104(20):203602. PubMed ID: 20867027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical detection of the quantization of collective atomic motion.
    Brahms N; Botter T; Schreppler S; Brooks DW; Stamper-Kurn DM
    Phys Rev Lett; 2012 Mar; 108(13):133601. PubMed ID: 22540699
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strong coupling of a mechanical oscillator and a single atom.
    Hammerer K; Wallquist M; Genes C; Ludwig M; Marquardt F; Treutlein P; Zoller P; Ye J; Kimble HJ
    Phys Rev Lett; 2009 Aug; 103(6):063005. PubMed ID: 19792563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dipole force free optical control and cooling of nanofiber trapped atoms.
    Østfeldt C; Béguin JS; Pedersen FT; Polzik ES; Müller JH; Appel J
    Opt Lett; 2017 Nov; 42(21):4315-4318. PubMed ID: 29088152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupled-cavity ring-down spectroscopy technique.
    Courtois J; Hodges JT
    Opt Lett; 2012 Aug; 37(16):3354-6. PubMed ID: 23381255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system.
    Khudaverdyan M; Alt W; Kampschulte T; Reick S; Thobe A; Widera A; Meschede D
    Phys Rev Lett; 2009 Sep; 103(12):123006. PubMed ID: 19792433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrafast spin-motion entanglement and interferometry with a single atom.
    Mizrahi J; Senko C; Neyenhuis B; Johnson KG; Campbell WC; Conover CW; Monroe C
    Phys Rev Lett; 2013 May; 110(20):203001. PubMed ID: 25167401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining red and blue-detuned optical potentials to form a Lamb-Dicke trap for a single neutral atom.
    He X; Yu S; Xu P; Wang J; Zhan M
    Opt Express; 2012 Feb; 20(4):3711-24. PubMed ID: 22418129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emission pattern of an atomic dipole in a high-finesse optical cavity.
    Maunz P; Puppe T; Fischer T; Pinkse PW; Rempe G
    Opt Lett; 2003 Jan; 28(1):46-8. PubMed ID: 12656531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sub-poissonian loading of single atoms in a microscopic dipole trap.
    Schlosser N; Reymond G; Protsenko I; Grangier P
    Nature; 2001 Jun; 411(6841):1024-7. PubMed ID: 11429597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light interference from single atoms and their mirror images.
    Eschner J; Raab C; Schmidt-Kaler F; Blatt R
    Nature; 2001 Oct; 413(6855):495-8. PubMed ID: 11586352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trapping and observing single atoms in a blue-detuned intracavity dipole trap.
    Puppe T; Schuster I; Grothe A; Kubanek A; Murr K; Pinkse PW; Rempe G
    Phys Rev Lett; 2007 Jul; 99(1):013002. PubMed ID: 17678150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cavity QED with quantized center of mass motion.
    Leach J; Rice PR
    Phys Rev Lett; 2004 Sep; 93(10):103601. PubMed ID: 15447402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-atom manipulations in a microscopic dipole trap.
    Reymond G; Schlosser N; Protsenko I; Grangier P
    Philos Trans A Math Phys Eng Sci; 2003 Jul; 361(1808):1527-36. PubMed ID: 12869327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical kaleidoscope using a single atom.
    Horak P; Ritsch H; Fischer T; Maunz P; Puppe T; Pinkse PW; Rempe G
    Phys Rev Lett; 2002 Jan; 88(4):043601. PubMed ID: 11801120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ground-state cooling for a trapped atom using cavity-induced double electromagnetically induced transparency.
    Yi Z; Gu WJ; Li GX
    Opt Express; 2013 Feb; 21(3):3445-62. PubMed ID: 23481803
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Atomic self-trapping induced by single-atom lasing.
    Salzburger T; Ritsch H
    Phys Rev Lett; 2004 Aug; 93(6):063002. PubMed ID: 15323625
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupling a single atomic quantum bit to a high finesse optical cavity.
    Mundt AB; Kreuter A; Becher C; Leibfried D; Eschner J; Schmidt-Kaler F; Blatt R
    Phys Rev Lett; 2002 Sep; 89(10):103001. PubMed ID: 12225188
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A deep optical cavity trap for atoms and molecules with rapid frequency and intensity modulation.
    Edmunds PD; Barker PF
    Rev Sci Instrum; 2013 Aug; 84(8):083101. PubMed ID: 24007047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.