These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11955500)

  • 1. An EMG-based, muscle driven forward simulation of single support phase of gait.
    Jonkers I; Spaepen A; Papaioannou G; Stewart C
    J Biomech; 2002 May; 35(5):609-19. PubMed ID: 11955500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic review of approaches to modelling lower limb muscle forces during gait: Applicability to clinical gait analyses.
    Trinler U; Hollands K; Jones R; Baker R
    Gait Posture; 2018 Mar; 61():353-361. PubMed ID: 29433090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and simulation of musculoskeletal system of human lower limb based on tensegrity structure.
    Wang Z; Yang C; Feng K; Qin X
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1282-1293. PubMed ID: 31553276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The study of muscle action during single support and swing phase of gait: clinical relevance of forward simulation techniques.
    Jonkers I; Stewart C; Spaepen A
    Gait Posture; 2003 Apr; 17(2):97-105. PubMed ID: 12633768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of muscle forces in gait using a simulation of the electromyographic activity and numerical optimization.
    Ravera EP; Crespo MJ; Braidot AA
    Comput Methods Biomech Biomed Engin; 2016; 19(1):1-12. PubMed ID: 25408069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complementary role of the plantarflexors, hamstrings and gluteus maximus in the control of stance limb stability during gait.
    Jonkers I; Stewart C; Spaepen A
    Gait Posture; 2003 Jun; 17(3):264-72. PubMed ID: 12770640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a method to scale muscle strength for gait simulations of children with cerebral palsy.
    Hegarty AK; Hulbert TV; Kurz MJ; Stuberg W; Silverman AK
    J Biomech; 2019 Jan; 83():165-173. PubMed ID: 30545605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Synergic analysis and dynamics pattern of human normal gait during swing phase].
    Yang Y; Wang R; Hao Z; Jin D; Zhang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):69-73. PubMed ID: 16532813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
    Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.
    Neptune RR; Kautz SA; Zajac FE
    J Biomech; 2001 Nov; 34(11):1387-98. PubMed ID: 11672713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lower limb angular velocity during walking at various speeds.
    Mentiplay BF; Banky M; Clark RA; Kahn MB; Williams G
    Gait Posture; 2018 Sep; 65():190-196. PubMed ID: 30558929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restriction of pelvic lateral and rotational motions alters lower limb kinematics and muscle activation pattern during over-ground walking.
    Mun KR; Guo Z; Yu H
    Med Biol Eng Comput; 2016 Nov; 54(11):1621-1629. PubMed ID: 26830107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the walking speed to the lower limb joint angular displacements, joint moments and ground reaction forces during walking in water.
    Miyoshi T; Shirota T; Yamamoto S; Nakazawa K; Akai M
    Disabil Rehabil; 2004 Jun; 26(12):724-32. PubMed ID: 15204495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis.
    Leardini A; Belvedere C; Nardini F; Sancisi N; Conconi M; Parenti-Castelli V
    J Biomech; 2017 Sep; 62():77-86. PubMed ID: 28601242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle activation patterns of the lumbo-pelvic-hip complex during walking gait before and after exercise.
    Chang M; Slater LV; Corbett RO; Hart JM; Hertel J
    Gait Posture; 2017 Feb; 52():15-21. PubMed ID: 27846435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity.
    Sartori M; Reggiani M; Farina D; Lloyd DG
    PLoS One; 2012; 7(12):e52618. PubMed ID: 23300725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of step length and step frequency on lower-limb muscle function in human gait.
    Lim YP; Lin YC; Pandy MG
    J Biomech; 2017 May; 57():1-7. PubMed ID: 28411958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cadence regulation on muscle activation patterns during robot assisted gait: a dynamic simulation study.
    Hussain S; Xie SQ; Jamwal PK
    IEEE J Biomed Health Inform; 2013 Mar; 17(2):442-51. PubMed ID: 23193249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle coordination of support, progression and balance during stair ambulation.
    Lin YC; Fok LA; Schache AG; Pandy MG
    J Biomech; 2015 Jan; 48(2):340-7. PubMed ID: 25498364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.