These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11955511)

  • 21. Inertial properties of the human trunk of males determined from magnetic resonance imaging.
    Pearsall DJ; Reid JG; Ross R
    Ann Biomed Eng; 1994; 22(6):692-706. PubMed ID: 7872577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating segment inertial properties: comparison of magnetic resonance imaging with existing methods.
    Mungiole M; Martin PE
    J Biomech; 1990; 23(10):1039-46. PubMed ID: 2229087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Body segment parameter estimation of the human lower leg using an elliptical model with validation from DEXA.
    Durkin JL; Dowling JJ
    Ann Biomed Eng; 2006 Sep; 34(9):1483-93. PubMed ID: 16847589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of segmental multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for the assessment of body composition in a community-dwelling older population.
    Kim M; Shinkai S; Murayama H; Mori S
    Geriatr Gerontol Int; 2015 Aug; 15(8):1013-22. PubMed ID: 25345548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and validation of anthropometric prediction equations for lean body mass, fat mass and percent fat in adults using the National Health and Nutrition Examination Survey (NHANES) 1999-2006.
    Lee DH; Keum N; Hu FB; Orav EJ; Rimm EB; Sun Q; Willett WC; Giovannucci EL
    Br J Nutr; 2017 Nov; 118(10):858-866. PubMed ID: 29110742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new geometric-based model to accurately estimate arm and leg inertial estimates.
    Wicke J; Dumas GA
    J Biomech; 2014 Jun; 47(8):1869-75. PubMed ID: 24735506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Segment inertial properties of primates: new techniques for laboratory and field studies of locomotion.
    Crompton RH; Li Y; Alexander RM; Wang W; Gunther MM
    Am J Phys Anthropol; 1996 Apr; 99(4):547-70. PubMed ID: 8779338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the volume and density functions within geometric models for estimating trunk inertial parameters.
    Wicke J; Dumas GA
    J Appl Biomech; 2010 Feb; 26(1):26-31. PubMed ID: 20147755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in segment inertia proportions between 4 and 20 years.
    Jensen RK
    J Biomech; 1989; 22(6-7):529-36. PubMed ID: 2808438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anthropometric, body composition, and blood pressure measures among rural elderly adults of Asian Indian origin: the Santiniketan aging study.
    Ghosh A; Bala SK
    J Nutr Gerontol Geriatr; 2011; 30(3):305-13. PubMed ID: 21846245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of two approaches for calculation of the geometric and inertial characteristics of the human body of the Bulgarian population.
    Nikolova G; Toshev Y
    Acta Bioeng Biomech; 2008; 10(1):3-8. PubMed ID: 18634348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Segment inertial parameter evaluation in two anthropometric models by application of a dynamic linked segment model.
    Kingma I; Toussaint HM; De Looze MP; Van Dieen JH
    J Biomech; 1996 May; 29(5):693-704. PubMed ID: 8707800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Derivation and validation of simple anthropometric equations to predict adipose tissue mass and total fat mass with MRI as the reference method.
    Al-Gindan YY; Hankey CR; Govan L; Gallagher D; Heymsfield SB; Lean ME
    Br J Nutr; 2015 Dec; 114(11):1852-67. PubMed ID: 26435103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The appropriate use of regression equations for the estimation of segmental inertia parameters.
    Yeadon MR; Morlock M
    J Biomech; 1989; 22(6-7):683-9. PubMed ID: 2808449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simplified method of clinical phenotyping for older men and women using established field-based measures.
    Fukuda DH; Smith-Ryan AE; Kendall KL; Moon JR; Stout JR
    Exp Gerontol; 2013 Dec; 48(12):1479-88. PubMed ID: 24140621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women.
    Iannuzzi-Sucich M; Prestwood KM; Kenny AM
    J Gerontol A Biol Sci Med Sci; 2002 Dec; 57(12):M772-7. PubMed ID: 12456735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Appendicular skeletal muscle in hospitalised hip-fracture patients: development and cross-validation of anthropometric prediction equations against dual-energy X-ray absorptiometry.
    Villani AM; Crotty M; Cameron ID; Kurrle SE; Skuza PP; Cleland LG; Cobiac L; Miller MD
    Age Ageing; 2014 Nov; 43(6):857-62. PubMed ID: 25049262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mathematical model for determining age-specific diabetes incidence and prevalence using body mass index.
    Appuhamy JA; Kebreab E; France J
    Ann Epidemiol; 2013 May; 23(5):248-54. PubMed ID: 23608303
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An examination of the relationships between service use and alternative measures of obesity among community-dwelling adults in Ireland.
    Doherty E; Queally M; O'Neill C
    Eur J Health Econ; 2015 Dec; 16(9):951-6. PubMed ID: 25344025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in body segment inertial parameters of obese individuals with weight loss.
    Matrangola SL; Madigan ML; Nussbaum MA; Ross R; Davy KP
    J Biomech; 2008 Nov; 41(15):3278-81. PubMed ID: 18930231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.