These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 11955985)

  • 1. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks.
    Granata KP; Padua DA; Wilson SE
    J Electromyogr Kinesiol; 2002 Apr; 12(2):127-35. PubMed ID: 11955985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex differences in relationship between passive ankle stiffness and leg stiffness during hopping.
    Hobara H; Kato E; Kobayashi Y; Ogata T
    J Biomech; 2012 Nov; 45(16):2750-4. PubMed ID: 23051683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of whole-body vertical stiffness and leg stiffness during single-leg hopping in place in children and adults.
    Beerse M; Wu J
    J Biomech; 2017 May; 56():71-75. PubMed ID: 28318604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertical stiffness and center-of-mass movement in children and adults during single-leg hopping.
    Beerse M; Wu J
    J Biomech; 2016 Oct; 49(14):3306-3312. PubMed ID: 27575778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of leg stiffness and surfaces stiffness during human hopping.
    Ferris DP; Farley CT
    J Appl Physiol (1985); 1997 Jan; 82(1):15-22; discussion 13-4. PubMed ID: 9029193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance.
    Allen SP; Grabowski AM
    J Appl Physiol (1985); 2019 Aug; 127(2):520-530. PubMed ID: 31219770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping.
    Bobbert MF; Richard Casius LJ
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1516-29. PubMed ID: 21502123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear center-of-mass dynamics emerge from non-linear leg-spring properties in human hopping.
    Riese S; Seyfarth A; Grimmer S
    J Biomech; 2013 Sep; 46(13):2207-12. PubMed ID: 23880438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leg stiffness adjustment during hopping at different intensities and frequencies.
    Mrdakovic V; Ilic D; Vulovic R; Matic M; Jankovic N; Filipovic N
    Acta Bioeng Biomech; 2014; 16(3):69-76. PubMed ID: 25308379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leg stiffness of older and younger individuals over a range of hopping frequencies.
    Hobara H; Kobayashi Y; Yoshida E; Mochimaru M
    J Electromyogr Kinesiol; 2015 Apr; 25(2):305-9. PubMed ID: 25716326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilateral deficit of spring-like behaviour during hopping in sprinters.
    Otsuka M; Kurihara T; Isaka T
    Eur J Appl Physiol; 2018 Feb; 118(2):475-481. PubMed ID: 29260403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Musculoskeletal stiffness during hopping and running does not change following downhill backwards walking.
    Joseph CW; Bradshaw EJ; Kemp J; Clark RA
    Sports Biomech; 2014 Sep; 13(3):241-58. PubMed ID: 25325769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gender specific strategies in demanding hopping conditions.
    Demirbüken I; Yurdalan SU; Savelberg H; Meijer K
    J Sports Sci Med; 2009; 8(2):265-70. PubMed ID: 24149536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leg stiffness primarily depends on ankle stiffness during human hopping.
    Farley CT; Morgenroth DC
    J Biomech; 1999 Mar; 32(3):267-73. PubMed ID: 10093026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of acute static and dynamic stretching on spring-mass leg stiffness.
    Goodwin JE; Glaister M; Lockey RA; Buxton E
    J Bodyw Mov Ther; 2020 Jan; 24(1):281-288. PubMed ID: 31987558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leg exoskeleton reduces the metabolic cost of human hopping.
    Grabowski AM; Herr HM
    J Appl Physiol (1985); 2009 Sep; 107(3):670-8. PubMed ID: 19423835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple method for field measurements of leg stiffness in hopping.
    Dalleau G; Belli A; Viale F; Lacour JR; Bourdin M
    Int J Sports Med; 2004 Apr; 25(3):170-6. PubMed ID: 15088239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hopping frequency on bilateral differences in leg stiffness.
    Hobara H; Inoue K; Kanosue K
    J Appl Biomech; 2013 Feb; 29(1):55-60. PubMed ID: 23462443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertical stiffness during one-legged hopping with and without using a running-specific prosthesis.
    Hobara H; Hashizume S; Funken J; Willwacher S; Müller R; Grabowski AM; Potthast W
    J Biomech; 2019 Mar; 86():34-39. PubMed ID: 30770198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of frequency on human unipedal hopping.
    Austin GP; Tiberio D; Garrett GE
    Percept Mot Skills; 2002 Dec; 95(3 Pt 1):733-40. PubMed ID: 12509167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.