These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 11955985)

  • 21. The application of musculoskeletal modeling to investigate gender bias in non-contact ACL injury rate during single-leg landings.
    Ali N; Andersen MS; Rasmussen J; Robertson DG; Rouhi G
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1602-16. PubMed ID: 23387967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gender differences in active musculoskeletal stiffness. Part I. Quantification in controlled measurements of knee joint dynamics.
    Granata KP; Wilson SE; Padua DA
    J Electromyogr Kinesiol; 2002 Apr; 12(2):119-26. PubMed ID: 11955984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leg stiffness: comparison between unilateral and bilateral hopping tasks.
    Brauner T; Sterzing T; Wulf M; Horstmann T
    Hum Mov Sci; 2014 Feb; 33():263-72. PubMed ID: 24290613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stance leg control: variation of leg parameters supports stable hopping.
    Riese S; Seyfarth A
    Bioinspir Biomim; 2012 Mar; 7(1):016006. PubMed ID: 22183256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reliability of Unilateral Vertical Leg Stiffness Measures Assessed During Bilateral Hopping.
    Maloney SJ; Fletcher IM; Richards J
    J Appl Biomech; 2015 Oct; 31(5):285-91. PubMed ID: 25880542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping.
    Auyang AG; Yen JT; Chang YH
    Exp Brain Res; 2009 Jan; 192(2):253-64. PubMed ID: 18839158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leg Joint Mechanics When Hopping at Different Frequencies.
    Qiao M
    J Appl Biomech; 2021 Jun; 37(3):263-271. PubMed ID: 33975280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The spring-mass model for running and hopping.
    Blickhan R
    J Biomech; 1989; 22(11-12):1217-27. PubMed ID: 2625422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Age-related differences in the neural regulation of stretch-shortening cycle activities in male youths during maximal and sub-maximal hopping.
    Lloyd RS; Oliver JL; Hughes MG; Williams CA
    J Electromyogr Kinesiol; 2012 Feb; 22(1):37-43. PubMed ID: 22000942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of added mass on human unipedal hopping at three frequencies.
    Austin GP; Tiberio D; Garrett GE
    Percept Mot Skills; 2003 Oct; 97(2):605-12. PubMed ID: 14620249
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in muscle activity with increase in leg stiffness during hopping.
    Hobara H; Kanosue K; Suzuki S
    Neurosci Lett; 2007 May; 418(1):55-9. PubMed ID: 17367931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Female Athletes With Varying Levels of Vertical Stiffness Display Kinematic and Kinetic Differences During Single-Leg Hopping.
    Waxman JP; Ford KR; Nguyen AD; Taylor JB
    J Appl Biomech; 2018 Feb; 34(1):65-75. PubMed ID: 28952871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leg stiffness and mechanical energetic processes during jumping on a sprung surface.
    Arampatzis A; Brüggemann GP; Klapsing GM
    Med Sci Sports Exerc; 2001 Jun; 33(6):923-31. PubMed ID: 11404657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in spring-mass characteristics during treadmill running to exhaustion.
    Dutto DJ; Smith GA
    Med Sci Sports Exerc; 2002 Aug; 34(8):1324-31. PubMed ID: 12165688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running.
    Joseph CW; Bradshaw EJ; Kemp J; Clark RA
    J Appl Biomech; 2013 Aug; 29(4):386-94. PubMed ID: 22923423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leg stiffness measures depend on computational method.
    Hébert-Losier K; Eriksson A
    J Biomech; 2014 Jan; 47(1):115-21. PubMed ID: 24188972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of computation methods for leg stiffness during hopping.
    Hobara H; Inoue K; Kobayashi Y; Ogata T
    J Appl Biomech; 2014 Feb; 30(1):154-9. PubMed ID: 24676522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comparison of Vertical Stiffness Values Calculated from Different Measures of Center of Mass Displacement in Single-Leg Hopping.
    Mudie KL; Gupta A; Green S; Hobara H; Clothier PJ
    J Appl Biomech; 2017 Feb; 33(1):39-47. PubMed ID: 27705055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lower Limb Joint Functions during Single-Leg Hopping in-Place in Children and Adults.
    Beerse M; Wu J
    J Mot Behav; 2022; 54(5):577-587. PubMed ID: 35016585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differences in spring-mass characteristics between one- and two-legged hopping.
    Hobara H; Kobayashi Y; Kato E; Ogata T
    J Appl Biomech; 2013 Dec; 29(6):785-9. PubMed ID: 23271206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.