These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 119571)

  • 41. [Possibilities of the method of "gas exchange" for detecting extraterrestrial life--identification of nitrogen-fixing microorganisms].
    Fedorova RI; Milekhina EI; Il'iukhina NI
    Izv Akad Nauk SSSR Biol; 1973; 6():797-806. PubMed ID: 4779561
    [No Abstract]   [Full Text] [Related]  

  • 42. Active N(2)O emission from bacterial microbiota of Andisol farmland and characterization of some N(2)O emitters.
    Takeda H; Takahashi N; Hatano R; Hashidoko Y
    J Basic Microbiol; 2012 Aug; 52(4):477-86. PubMed ID: 22144290
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitrous oxide production kinetics during nitrate reduction in river sediments.
    Laverman AM; Garnier JA; Mounier EM; Roose-Amsaleg CL
    Water Res; 2010 Mar; 44(6):1753-64. PubMed ID: 20116823
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ammonium sorption and ammonia inhibition of nitrite-oxidizing bacteria explain contrasting soil N2O production.
    Venterea RT; Clough TJ; Coulter JA; Breuillin-Sessoms F; Wang P; Sadowsky MJ
    Sci Rep; 2015 Jul; 5():12153. PubMed ID: 26179972
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolism of nitric oxide in denitrifying Pseudomonas aeruginosa and nitrate-respiring Bacillus cereus.
    Kalkowski I; Conrad R
    FEMS Microbiol Lett; 1991 Jul; 66(1):107-11. PubMed ID: 1936933
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activation of N2O reduction by the fully reduced micro4-sulfide bridged tetranuclear Cu Z cluster in nitrous oxide reductase.
    Ghosh S; Gorelsky SI; Chen P; Cabrito I; Moura JJ; Moura I; Solomon EI
    J Am Chem Soc; 2003 Dec; 125(51):15708-9. PubMed ID: 14677937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species.
    Thomas KL; Lloyd D; Boddy L
    FEMS Microbiol Lett; 1994 May; 118(1-2):181-6. PubMed ID: 8013877
    [TBL] [Abstract][Full Text] [Related]  

  • 48. As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes.
    Drake HL; Horn MA
    Annu Rev Microbiol; 2007; 61():169-89. PubMed ID: 17506687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Effect of nitrogen sources on the kinetic growth parameters of a Pseudomonas aeruginosa culture oxidizing quinoline].
    Turovskiĭ AA; Shevchenko AG; Dzumedzeĭ NV
    Mikrobiologiia; 1984; 53(2):341-2. PubMed ID: 6429493
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Activity and composition of ammonia oxidizing bacterial communities and emission dynamics of NH3 and N2O in a compost reactor treating organic household waste.
    Jarvis A; Sundberg C; Milenkovski S; Pell M; Smårs S; Lindgren PE; Hallin S
    J Appl Microbiol; 2009 May; 106(5):1502-11. PubMed ID: 19210570
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of the mechanisms underlying the high acetylene-reducing activity exhibited by the soil bacterial community from BC2 horizon in the permafrost zone of the East Siberian larch forest bed.
    Hara S; Desyatkin RV; Hashidoko Y
    J Appl Microbiol; 2014 Apr; 116(4):865-76. PubMed ID: 24456192
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Microbiological transformation of organic compounds in co-oxidation conditions].
    Skriabin GK; Golovleva LA
    Izv Akad Nauk SSSR Biol; 1972; 2():232-44. PubMed ID: 4623307
    [No Abstract]   [Full Text] [Related]  

  • 53. A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils.
    Rennie RJ
    Can J Microbiol; 1981 Jan; 27(1):8-14. PubMed ID: 7214234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of a denitrifying gliding bacterium, isolated from soil and able to reduce nitrous oxide in the presence of sulfide and acetylene, as Flexibacter canadensis.
    Jones AM; Adkins AM; Knowles R; Rayat GR
    Can J Microbiol; 1990 Nov; 36(11):765-70. PubMed ID: 22049936
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of glucose on decomposition of vanillin by soil microorganisms.
    Kunc F
    Folia Microbiol (Praha); 1971; 16(1):51-7. PubMed ID: 5546133
    [No Abstract]   [Full Text] [Related]  

  • 56. Substrate oxidation and nitrous oxide utilization in denitrification.
    SACKS LE; BARKER HA
    J Bacteriol; 1952 Aug; 64(2):247-52. PubMed ID: 14955518
    [No Abstract]   [Full Text] [Related]  

  • 57. Production and utilization of nitrous oxide by Pseudomonas denitrificans.
    DELWICHE CC
    J Bacteriol; 1959 Jan; 77(1):55-9. PubMed ID: 13620649
    [No Abstract]   [Full Text] [Related]  

  • 58. Cysteine and S-sulphocysteine biosynthesis in bacteria.
    Chambers LA; Trudinger PA
    Arch Mikrobiol; 1971; 77(2):165-84. PubMed ID: 4997718
    [No Abstract]   [Full Text] [Related]  

  • 59. Hydrogen sulfide production by Pseudomonas aeruginosa. II. Qualitative substrate studies.
    VON RIESEN VL
    J Bacteriol; 1963 Jan; 85(1):248-9. PubMed ID: 13997870
    [No Abstract]   [Full Text] [Related]  

  • 60. The intermediate metabolism of Pseudomonas aeruginosa; limitations of simultaneous adaptation as applied to the identification of acetic acid, an intermediate in glucose oxidation.
    CAMPBELL JJ; NORRIS FC; NORRIS ME
    Can J Res; 1949 Aug; 27(4):165-71. PubMed ID: 18137028
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.