These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 1195853)

  • 1. Biological fuel cell incorporating selective membranes.
    Affrossman S; Courtney JM; Gilchrist T; Martin I
    Med Biol Eng; 1975 Jul; 13(4):539-43. PubMed ID: 1195853
    [No Abstract]   [Full Text] [Related]  

  • 2. Diversifying biological fuel cell designs by use of nanoporous filters.
    Biffinger JC; Ray R; Little B; Ringeisen BR
    Environ Sci Technol; 2007 Feb; 41(4):1444-9. PubMed ID: 17593755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorinated imidazoles as proton carriers for water-free fuel cell membranes.
    Deng WQ; Molinero V; Goddard WA
    J Am Chem Soc; 2004 Dec; 126(48):15644-5. PubMed ID: 15571377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of membranes and enrichment strategies for microbial fuel cells.
    Lefebvre O; Shen Y; Tan Z; Uzabiaga A; Chang IS; Ng HY
    Bioresour Technol; 2011 May; 102(10):6291-4. PubMed ID: 21402475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications.
    Yang J; Aili D; Li Q; Cleemann LN; Jensen JO; Bjerrum NJ; He R
    ChemSusChem; 2013 Feb; 6(2):275-82. PubMed ID: 23303655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite materials for polymer electrolyte membrane microbial fuel cells.
    Antolini E
    Biosens Bioelectron; 2015 Jul; 69():54-70. PubMed ID: 25703729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Employing a Flexible and Low-Cost Polypyrrole Nanotube Membrane as an Anode to Enhance Current Generation in Microbial Fuel Cells.
    Zhao CE; Wu J; Kjelleberg S; Loo JS; Zhang Q
    Small; 2015 Jul; 11(28):3440-3. PubMed ID: 25828694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regenerated silk fibroin membranes as separators for transparent microbial fuel cells.
    Pasternak G; Yang Y; Santos BB; Brunello F; Hanczyc MM; Motta A
    Bioelectrochemistry; 2019 Apr; 126():146-155. PubMed ID: 30597451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation.
    Holder SL; Lee CH; Popuri SR; Zhuang MX
    Carbohydr Polym; 2016 Sep; 149():251-62. PubMed ID: 27261749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anion-Exchange Membranes for Alkaline Fuel-Cell Applications: The Effects of Cations.
    Sun Z; Lin B; Yan F
    ChemSusChem; 2018 Jan; 11(1):58-70. PubMed ID: 28922576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane.
    Liu Z; Liu J; Zhang S; Su Z
    Biotechnol Lett; 2008 Jun; 30(6):1017-23. PubMed ID: 18259873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems.
    Harnisch F; Warmbier R; Schneider R; Schröder U
    Bioelectrochemistry; 2009 Jun; 75(2):136-41. PubMed ID: 19349214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated membrane and microbial fuel cell technologies for enabling energy-efficient effluent Re-use in power plants.
    Shrestha N; Chilkoor G; Xia L; Alvarado C; Kilduff JE; Keating JJ; Belfort G; Gadhamshetty V
    Water Res; 2017 Jun; 117():37-48. PubMed ID: 28388506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyaluronidase-bound membrane as a biomaterial for implantable fuel cells.
    Ahn BK; Wolfson SK; Yao SJ; Liu CC; Todd RC; Weiner SB
    J Biomed Mater Res; 1976 Mar; 10(2):283-94. PubMed ID: 1254616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomembranes for fuel cell electrolytes employing anhydrous proton conducting uracil composites.
    Yamada M; Honma I
    Biosens Bioelectron; 2006 May; 21(11):2064-9. PubMed ID: 16530401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further development on DMFC device used for analytical purpose: real applications in the pharmaceutical field and possible in biological fluids.
    Tomassetti M; Merola G; Angeloni R; Marchiandi S; Campanella L
    Anal Bioanal Chem; 2016 Oct; 408(26):7311-9. PubMed ID: 27510282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioelectricity generation in an integrated system combining microbial fuel cell and tubular membrane reactor: effects of operation parameters performing a microbial fuel cell-based biosensor for tubular membrane bioreactor.
    Wang J; Zheng Y; Jia H; Zhang H
    Bioresour Technol; 2014 Oct; 170():483-490. PubMed ID: 25164340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells.
    Winfield J; Chambers LD; Rossiter J; Ieropoulos I
    Bioresour Technol; 2013 Nov; 148():480-6. PubMed ID: 24077158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial reverse electrodialysis cells for synergistically enhanced power production.
    Kim Y; Logan BE
    Environ Sci Technol; 2011 Jul; 45(13):5834-9. PubMed ID: 21644573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copolymerization of divinylsilyl-11-silicotungstic acid with butyl acrylate and hexanediol diacrylate: synthesis of a highly proton-conductive membrane for fuel-cell applications.
    Horan JL; Genupur A; Ren H; Sikora BJ; Kuo MC; Meng F; Dec SF; Haugen GM; Yandrasits MA; Hamrock SJ; Frey MH; Herring AM
    ChemSusChem; 2009; 2(3):226-9. PubMed ID: 19170068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.