These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 1195867)
1. Fluid flow in soft-walled tubes part 1: steady flow. Oates GC Med Biol Eng; 1975 Nov; 13(6):773-9. PubMed ID: 1195867 [No Abstract] [Full Text] [Related]
2. Fluid flow in soft-walled tubes part 2: behaviour of finite waves. Oates GC Med Biol Eng; 1975 Nov; 13(6):780-4. PubMed ID: 1195868 [No Abstract] [Full Text] [Related]
3. A theory of fluid flow in compliant tubes. Barnard AC; Hunt WA; Timlake WP; Varley E Biophys J; 1966 Nov; 6(6):717-24. PubMed ID: 5972373 [TBL] [Abstract][Full Text] [Related]
4. Wave propagation in a viscous fluid contained in an orthotropic elastic tube. Mirsky I Biophys J; 1967 Mar; 7(2):165-86. PubMed ID: 6048869 [TBL] [Abstract][Full Text] [Related]
5. Negative-resistance effects in flow through collapsible tubes: 2 two-dimensional theory of flow near an elastic constriction. Griffiths DJ Med Biol Eng; 1975 Nov; 13(6):791-6. PubMed ID: 1195870 [No Abstract] [Full Text] [Related]
8. Negative-resistance effects in flow through collapsible tubes: 3 two-dimensional treatment of the elastic properties of elastic constriction. Griffiths DJ Med Biol Eng; 1975 Nov; 13(6):797-802. PubMed ID: 1195871 [No Abstract] [Full Text] [Related]
11. Steady flow through collapsible tubes: measurements of flow and geometry. Elad D; Sahar M; Avidor JM; Einav S J Biomech Eng; 1992 Feb; 114(1):84-91. PubMed ID: 1491591 [TBL] [Abstract][Full Text] [Related]
12. Difference-differential equations for fluid flow in distensible tubes. Rideout VC; Dick DE IEEE Trans Biomed Eng; 1967 Jul; 14(3):171-7. PubMed ID: 6080534 [No Abstract] [Full Text] [Related]
13. Conditions of flow at interfaces with flexible walls. Silberberg A Ann N Y Acad Sci; 1976; 275():2-9. PubMed ID: 1070271 [TBL] [Abstract][Full Text] [Related]
14. The role of the surrounding tissue in the propagation of waves through the arterial system. Dinnar U TIT J Life Sci; 1975; 5(3-4):49-56. PubMed ID: 1231056 [TBL] [Abstract][Full Text] [Related]
16. Numerical simulation of the flow of highly viscous drops down a tapered tube. Tran-Son-Tay R; Kirk TF; Zhelev DV; Hochmuth RM J Biomech Eng; 1994 May; 116(2):172-7. PubMed ID: 8078323 [TBL] [Abstract][Full Text] [Related]
17. [Digital simulation of the biological flow-reaction absorption systems]. Yokoyama R; Hoshi T; Sato J Iyodenshi To Seitai Kogaku; 1977 Feb; 15(1):23-30. PubMed ID: 559821 [No Abstract] [Full Text] [Related]
18. INDICATOR DISPERSION IN THE CIRCULATION. BASSINGTHWAIGHTE JB; WARNER HR Am Heart J; 1965 Jun; 69():838-41. PubMed ID: 14296649 [No Abstract] [Full Text] [Related]
19. Effect of mixing on the washout and steady-state performance of continuous cultures. Fan LT; Erickson LE; Shah PS; Tsai BI Biotechnol Bioeng; 1970 Nov; 12(6):1019-68. PubMed ID: 4950531 [No Abstract] [Full Text] [Related]
20. The energetics of flow through a rapidly oscillating tube with slowly varying amplitude. Whittaker RJ; Heil M; Waters SL Philos Trans A Math Phys Eng Sci; 2011 Jul; 369(1947):2989-3006. PubMed ID: 21690145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]