BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11958823)

  • 1. Brain-derived neurotrophic factor in experimental autoimmune neuritis.
    Felts PA; Smith KJ; Gregson NA; Hughes RA
    J Neuroimmunol; 2002 Mar; 124(1-2):62-9. PubMed ID: 11958823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal protection in experimental autoimmune neuritis by the sodium channel blocking agent flecainide.
    Bechtold DA; Yue X; Evans RM; Davies M; Gregson NA; Smith KJ
    Brain; 2005 Jan; 128(Pt 1):18-28. PubMed ID: 15509620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transplantation of Schwann cells co-cultured with brain-derived neurotrophic factor for the treatment of experimental autoimmune neuritis.
    Hou X; Liang Q; Wu Y
    J Neuroimmunol; 2013 Oct; 263(1-2):83-90. PubMed ID: 23993653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurophysiological changes in demyelinating and axonal forms of acute experimental autoimmune neuritis in the Lewis rat.
    Taylor JM; Pollard JD
    Muscle Nerve; 2003 Sep; 28(3):344-52. PubMed ID: 12929195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neurotrophic analogue of ACTH(4-9), Org 2766, protects against experimental allergic neuritis.
    Duckers HJ; Verhaagen J; Gispen WH
    Brain; 1993 Oct; 116 ( Pt 5)():1059-75. PubMed ID: 8221047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective use of a neurotrophic ACTH4-9 analogue in the treatment of a peripheral demyelinating syndrome (experimental allergic neuritis). An intervention study.
    Duckers HJ; Verhaagen J; de Bruijn E; Gispen WH
    Brain; 1994 Apr; 117 ( Pt 2)():365-74. PubMed ID: 8186962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time Course of Axon and Myelin Degeneration in Peripheral Nerves in Experimental Autoimmune Neuritis Rats.
    Tomikawa E; Mutsuga M; Hara K; Kaneko C; Togashi Y; Miyamoto Y
    Toxicol Pathol; 2019 Jun; 47(4):542-552. PubMed ID: 30987532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Failure of intravenous immunoglobulin (IVIg) therapy in experimental autoimmune neuritis (EAN) of the Lewis rat.
    Enders U; Toyka KV; Hartung HP; Gold R
    J Neuroimmunol; 1997 Jun; 76(1-2):112-6. PubMed ID: 9184640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Brain-Derived Neurotrophic Factor-Based p75
    Gonsalvez DG; Tran G; Fletcher JL; Hughes RA; Hodgkinson S; Wood RJ; Yoo SW; De Silva M; Agnes WW; McLean C; Kennedy P; Kilpatrick TJ; Murray SS; Xiao J
    eNeuro; 2017; 4(3):. PubMed ID: 28680965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficacy of leukemia inhibitory factor in experimental autoimmune neuritis.
    Laurà M; Gregson NA; Curmi Y; Hughes RA
    J Neuroimmunol; 2002 Dec; 133(1-2):56-9. PubMed ID: 12446008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protective effect of Rolipram in experimental autoimmune neuritis: protection is associated with down-regulation of IFN-gamma and inflammatory chemokines as well as up-regulation of IL-4 in peripheral nervous system.
    Abbas N; Zou LP; Pelidou SH; Winblad B; Zhu J
    Autoimmunity; 2000 Sep; 32(2):93-9. PubMed ID: 11078155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of experimental autoimmune neuritis in Lewis rats: the dual role of macrophages.
    Shin T; Ahn M; Matsumoto Y; Moon C
    Histol Histopathol; 2013 Jun; 28(6):679-84. PubMed ID: 23440744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor necrosis factor-α in Guillain-Barré syndrome, friend or foe?
    Wang Y; Zhang J; Luo P; Zhu J; Feng J; Zhang HL
    Expert Opin Ther Targets; 2017 Jan; 21(1):103-112. PubMed ID: 27817222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2,4-Dinitrophenol does not exert neuro-regenerative potential in experimental autoimmune neuritis.
    Kohle F; Ackfeld R; Klein I; Svačina MKR; Schneider C; van Beers T; Grandoch A; Fink GR; Lehmann HC; Barham M
    Neurosci Lett; 2023 Sep; 814():137456. PubMed ID: 37648059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of macrophage migration inhibitory factor in Guillain-Barré syndrome and experimental autoimmune neuritis: beneficial or harmful?
    Shen D; Lang Y; Chu F; Wu X; Wang Y; Zheng X; Zhang HL; Zhu J; Liu K
    Expert Opin Ther Targets; 2018 Jul; 22(7):567-577. PubMed ID: 29856236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The therapeutic effects of ginkgolides in Guillain-Barré syndrome and experimental autoimmune neuritis.
    Li C; Liu S; Aerqin Q; Shen D; Wu X; Liu K
    J Clin Neurosci; 2021 May; 87():44-49. PubMed ID: 33863532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bowman-Birk inhibitor concentrate suppresses experimental autoimmune neuritis via shifting macrophages from M1 to M2 subtype.
    Jin T; Yu H; Wang D; Zhang H; Zhang B; Quezada HC; Zhu J; Zhu W
    Immunol Lett; 2016 Mar; 171():15-25. PubMed ID: 26791957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. M1 Macrophage Derived Exosomes Aggravate Experimental Autoimmune Neuritis via Modulating Th1 Response.
    Du T; Yang CL; Ge MR; Liu Y; Zhang P; Li H; Li XL; Li T; Liu YD; Dou YC; Yang B; Duan RS
    Front Immunol; 2020; 11():1603. PubMed ID: 32793234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chrysin attenuates experimental autoimmune neuritis by suppressing immuno-inflammatory responses.
    Xiao J; Zhai H; Yao Y; Wang C; Jiang W; Zhang C; Simard AR; Zhang R; Hao J
    Neuroscience; 2014 Mar; 262():156-64. PubMed ID: 24412705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuropathic pain in experimental autoimmune neuritis is associated with altered electrophysiological properties of nociceptive DRG neurons.
    Taha O; Opitz T; Mueller M; Pitsch J; Becker A; Evert BO; Beck H; Jeub M
    Exp Neurol; 2017 Nov; 297():25-35. PubMed ID: 28734788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.