BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11959094)

  • 1. Reactive oxygen species inhibit the succinate oxidation-supported generation of membrane potential in wheat mitochondria.
    Pastore D; Laus MN; Di Fonzo N; Passarella S
    FEBS Lett; 2002 Apr; 516(1-3):15-9. PubMed ID: 11959094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria.
    Votyakova TV; Reynolds IJ
    J Neurochem; 2001 Oct; 79(2):266-77. PubMed ID: 11677254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis.
    Diemer T; Allen JA; Hales KH; Hales DB
    Endocrinology; 2003 Jul; 144(7):2882-91. PubMed ID: 12810543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant inner membrane anion channel (PIMAC) function in plant mitochondria.
    Laus MN; Soccio M; Trono D; Cattivelli L; Pastore D
    Plant Cell Physiol; 2008 Jul; 49(7):1039-55. PubMed ID: 18511459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crucial role of membrane potential in heat stress-induced overproduction of reactive oxygen species in avian skeletal muscle mitochondria.
    Kikusato M; Toyomizu M
    PLoS One; 2013; 8(5):e64412. PubMed ID: 23671714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fatty acids, nucleotides and reactive oxygen species on durum wheat mitochondria.
    Pastore D; Fratianni A; Di Pede S; Passarella S
    FEBS Lett; 2000 Mar; 470(1):88-92. PubMed ID: 10722851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria.
    Tretter L; Takacs K; Hegedus V; Adam-Vizi V
    J Neurochem; 2007 Feb; 100(3):650-63. PubMed ID: 17263793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria.
    Pastore D; Trono D; Laus MN; Di Fonzo N; Flagella Z
    J Exp Bot; 2007; 58(2):195-210. PubMed ID: 17261694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca(2+)-induced high amplitude swelling and cytochrome c release from wheat (Triticum aestivum L.) mitochondria under anoxic stress.
    Virolainen E; Blokhina O; Fagerstedt K
    Ann Bot; 2002 Oct; 90(4):509-16. PubMed ID: 12324275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aging and caloric restriction affect mitochondrial respiration and lipid membrane status: an electron paramagnetic resonance investigation.
    Gabbita SP; Butterfield DA; Hensley K; Shaw W; Carney JM
    Free Radic Biol Med; 1997; 23(2):191-201. PubMed ID: 9199881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Failure of exogenous NADH and cytochrome c to support energy-dependent swelling of mitochondria.
    Lemeshko VV
    Arch Biochem Biophys; 2001 Apr; 388(1):60-6. PubMed ID: 11361141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Krebs cycle metabolites and preferential succinate oxidation following neonatal hypoxic-ischemic brain injury in mice.
    Sahni PV; Zhang J; Sosunov S; Galkin A; Niatsetskaya Z; Starkov A; Brookes PS; Ten VS
    Pediatr Res; 2018 Feb; 83(2):491-497. PubMed ID: 29211056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability.
    Briston T; Roberts M; Lewis S; Powney B; M Staddon J; Szabadkai G; Duchen MR
    Sci Rep; 2017 Sep; 7(1):10492. PubMed ID: 28874733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial fatty acid oxidation and oxidative stress: lack of reverse electron transfer-associated production of reactive oxygen species.
    Schönfeld P; Wieckowski MR; Lebiedzińska M; Wojtczak L
    Biochim Biophys Acta; 2010; 1797(6-7):929-38. PubMed ID: 20085746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state.
    Kushnareva Y; Murphy AN; Andreyev A
    Biochem J; 2002 Dec; 368(Pt 2):545-53. PubMed ID: 12180906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of superoxide by the mitochondrial Complex I.
    Grivennikova VG; Vinogradov AD
    Biochim Biophys Acta; 2006; 1757(5-6):553-61. PubMed ID: 16678117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of bovine serum albumin on the membrane potential and reactive oxygen species generation in succinate-supported isolated brain mitochondria.
    Tretter L; Mayer-Takacs D; Adam-Vizi V
    Neurochem Int; 2007 Jan; 50(1):139-47. PubMed ID: 16965838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria.
    Petrosillo G; Ruggiero FM; Paradies G
    FASEB J; 2003 Dec; 17(15):2202-8. PubMed ID: 14656982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of glutamine-efflux from liver mitochondria loaded with the 14C-Labeled substrate.
    Kovacević Z; Bajin K
    Biochim Biophys Acta; 1982 May; 687(2):291-5. PubMed ID: 7093259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.