These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11959430)

  • 1. Rhizobial acyl carrier proteins and their roles in the formation of bacterial cell-surface components that are required for the development of nitrogen-fixing root nodules on legume hosts.
    Geiger O; López-Lara IM
    FEMS Microbiol Lett; 2002 Mar; 208(2):153-62. PubMed ID: 11959430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression and purification of four different rhizobial acyl carrier proteins.
    López-Lara IM; Geiger O
    Microbiology (Reading); 2000 Apr; 146 ( Pt 4)():839-849. PubMed ID: 10784042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of the constitutive acyl carrier protein from Rhizobium meliloti.
    Platt MW; Miller KJ; Lane WS; Kennedy EP
    J Bacteriol; 1990 Sep; 172(9):5440-4. PubMed ID: 2144277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SMb20651 is another acyl carrier protein from Sinorhizobium meliloti.
    Ramos-Vega AL; Dávila-Martínez Y; Sohlenkamp C; Contreras-Martínez S; Encarnación S; Geiger O; López-Lara IM
    Microbiology (Reading); 2009 Jan; 155(Pt 1):257-267. PubMed ID: 19118366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A special acyl carrier protein for transferring long hydroxylated fatty acids to lipid A in Rhizobium.
    Brozek KA; Carlson RW; Raetz CR
    J Biol Chem; 1996 Dec; 271(50):32126-36. PubMed ID: 8943266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A soybean acyl carrier protein, GmACP, is important for root nodule symbiosis.
    Wang J; Tóth K; Tanaka K; Nguyen CT; Yan Z; Brechenmacher L; Dahmen J; Chen M; Thelen JJ; Qiu L; Stacey G
    Mol Plant Microbe Interact; 2014 May; 27(5):415-23. PubMed ID: 24400939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of an interspecies chimera of acyl carrier proteins indicates a specialized domain for protein recognition.
    Ritsema T; Gehring AM; Stuitje AR; van der Drift KM; Dandal I; Lambalot RH; Walsh CT; Thomas-Oates JE; Lugtenberg BJ; Spaink HP
    Mol Gen Genet; 1998 Apr; 257(6):641-8. PubMed ID: 9604887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel acyl carrier protein, RkpF, encoded by an operon involved in capsular polysaccharide biosynthesis in Sinorhizobium meliloti.
    Epple G; van der Drift KM; Thomas-Oates JE; Geiger O
    J Bacteriol; 1998 Sep; 180(18):4950-4. PubMed ID: 9733701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the Mesorhizobium huakuii and Rhizobium galegae Nod factors: a cluster of phylogenetically related legumes are nodulated by rhizobia producing Nod factors with alpha,beta-unsaturated N-acyl substitutions.
    Yang GP; Debellé F; Savagnac A; Ferro M; Schiltz O; Maillet F; Promé D; Treilhou M; Vialas C; Lindstrom K; Dénarié J; Promé JC
    Mol Microbiol; 1999 Oct; 34(2):227-37. PubMed ID: 10564467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nod genes and Nod signals and the evolution of the Rhizobium legume symbiosis.
    Debellé F; Moulin L; Mangin B; Dénarié J; Boivin C
    Acta Biochim Pol; 2001; 48(2):359-65. PubMed ID: 11732607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots.
    Ibáñez F; Wall L; Fabra A
    J Exp Bot; 2017 Apr; 68(8):1905-1918. PubMed ID: 27756807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis.
    Fauvart M; Michiels J
    FEMS Microbiol Lett; 2008 Aug; 285(1):1-9. PubMed ID: 18616593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sinorhizobium meliloti acpXL mutant lacks the C28 hydroxylated fatty acid moiety of lipid A and does not express a slow migrating form of lipopolysaccharide.
    Sharypova LA; Niehaus K; Scheidle H; Holst O; Becker A
    J Biol Chem; 2003 Apr; 278(15):12946-54. PubMed ID: 12566460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigations of Rhizobium biofilm formation.
    Fujishige NA; Kapadia NN; De Hoff PL; Hirsch AM
    FEMS Microbiol Ecol; 2006 May; 56(2):195-206. PubMed ID: 16629750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How inefficient rhizobia prolong their existence within nodules.
    Schumpp O; Deakin WJ
    Trends Plant Sci; 2010 Apr; 15(4):189-95. PubMed ID: 20117958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation and function of rhizobial nodulation genes.
    Göttfert M
    FEMS Microbiol Rev; 1993 Jan; 10(1-2):39-63. PubMed ID: 8431309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coevolution in Rhizobium-legume symbiosis?
    Martínez-Romero E
    DNA Cell Biol; 2009 Aug; 28(8):361-70. PubMed ID: 19485766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grafting between model legumes demonstrates roles for roots and shoots in determining nodule type and host/rhizobia specificity.
    Lohar DP; VandenBosch KA
    J Exp Bot; 2005 Jun; 56(416):1643-50. PubMed ID: 15824071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental and modelling exploration of the host-sanction hypothesis in legume-rhizobia mutualism.
    Marco DE; Carbajal JP; Cannas S; Pérez-Arnedo R; Hidalgo-Perea A; Olivares J; Ruiz-Sainz JE; Sanjuán J
    J Theor Biol; 2009 Aug; 259(3):423-33. PubMed ID: 19358857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular insights into bacteroid development during Rhizobium-legume symbiosis.
    Haag AF; Arnold MF; Myka KK; Kerscher B; Dall'Angelo S; Zanda M; Mergaert P; Ferguson GP
    FEMS Microbiol Rev; 2013 May; 37(3):364-83. PubMed ID: 22998605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.