BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11959447)

  • 21. Characterization of the last step of the aerobic phenylacetic acid degradation pathway.
    Nogales J; Macchi R; Franchi F; Barzaghi D; Fernández C; García JL; Bertoni G; Díaz E
    Microbiology (Reading); 2007 Feb; 153(Pt 2):357-365. PubMed ID: 17259607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular cloning and expression in different microbes of the DNA encoding Pseudomonas putida U phenylacetyl-CoA ligase. Use of this gene to improve the rate of benzylpenicillin biosynthesis in Penicillium chrysogenum.
    Miñambres B; Martínez-Blanco H; Olivera ER; García B; Díez B; Barredo JL; Moreno MA; Schleissner C; Salto F; Luengo JM
    J Biol Chem; 1996 Dec; 271(52):33531-8. PubMed ID: 8969218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catabolism of aromatics in Pseudomonas putida U. Formal evidence that phenylacetic acid and 4-hydroxyphenylacetic acid are catabolized by two unrelated pathways.
    Olivera ER; Reglero A; Martínez-Blanco H; Fernández-Medarde A; Moreno MA; Luengo JM
    Eur J Biochem; 1994 Apr; 221(1):375-81. PubMed ID: 8168524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of Pyrroloquinoline Quinone-Dependent Glucose Dehydrogenase Activity in the Model Rhizosphere-Dwelling Bacterium Pseudomonas putida KT2440.
    An R; Moe LA
    Appl Environ Microbiol; 2016 Aug; 82(16):4955-64. PubMed ID: 27287323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase.
    Lamas-Maceiras M; Vaca I; Rodríguez E; Casqueiro J; Martín JF
    Biochem J; 2006 Apr; 395(1):147-55. PubMed ID: 16321143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic characterization of the styrene lower catabolic pathway of Pseudomonas sp. strain Y2.
    Alonso S; Bartolomé-Martín D; del Alamo M; Díaz E; García JL; Perera J
    Gene; 2003 Nov; 319():71-83. PubMed ID: 14597173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The cyo operon of Pseudomonas putida is involved in carbon catabolite repression of phenol degradation.
    Petruschka L; Burchhardt G; Müller C; Weihe C; Herrmann H
    Mol Genet Genomics; 2001 Oct; 266(2):199-206. PubMed ID: 11683260
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification of Pseudomonas putida acyl coenzyme A ligase active with a range of aliphatic and aromatic substrates.
    Fernández-Valverde M; Reglero A; Martinez-Blanco H; Luengo JM
    Appl Environ Microbiol; 1993 Apr; 59(4):1149-54. PubMed ID: 8476289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and characterization of styrene metabolism genes from styrene-assimilating soil bacteria Rhodococcus sp. ST-5 and ST-10.
    Toda H; Itoh N
    J Biosci Bioeng; 2012 Jan; 113(1):12-9. PubMed ID: 21996027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon.
    Olivera ER; Miñambres B; García B; Muñiz C; Moreno MA; Ferrández A; Díaz E; García JL; Luengo JM
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6419-24. PubMed ID: 9600981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: evidence from continuous cultures.
    Dinamarca MA; Aranda-Olmedo I; Puyet A; Rojo F
    J Bacteriol; 2003 Aug; 185(16):4772-8. PubMed ID: 12896996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions.
    Nikodinovic-Runic J; Flanagan M; Hume AR; Cagney G; O'Connor KE
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3348-3361. PubMed ID: 19608612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of pnpR, a LysR-type regulator-encoding gene, on the cellular processes of Pseudomonas putida DLL-E4.
    Chen Q; Tu H; Huang F; Wang Y; Dong W; Wang W; Li Z; Wang F; Cui Z
    FEMS Microbiol Lett; 2016 Jun; 363(12):. PubMed ID: 27190157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The sigma54-dependent transcriptional activator SfnR regulates the expression of the Pseudomonas putida sfnFG operon responsible for dimethyl sulphone utilization.
    Endoh T; Habe H; Nojiri H; Yamane H; Omori T
    Mol Microbiol; 2005 Feb; 55(3):897-911. PubMed ID: 15661012
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Levels and activity of the Pseudomonas putida global regulatory protein Crc vary according to growth conditions.
    Ruiz-Manzano A; Yuste L; Rojo F
    J Bacteriol; 2005 Jun; 187(11):3678-86. PubMed ID: 15901690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing Indigo Production by Over-Expression of the Styrene Monooxygenase in Pseudomonas putida.
    Cheng L; Yin S; Chen M; Sun B; Hao S; Wang C
    Curr Microbiol; 2016 Aug; 73(2):248-54. PubMed ID: 27154464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A green fluorescent protein-based whole-cell bioreporter for the detection of phenylacetic acid.
    Kim J; Jeon CO; Park W
    J Microbiol Biotechnol; 2007 Oct; 17(10):1727-32. PubMed ID: 18156794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of the ptsN gene product in catabolite repression of the Pseudomonas putida TOL toluene degradation pathway in chemostat cultures.
    Aranda-Olmedo I; Marín P; Ramos JL; Marqués S
    Appl Environ Microbiol; 2006 Nov; 72(11):7418-21. PubMed ID: 16997980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phenylacetate-coenzyme A ligase is induced during growth on phenylacetic acid in different bacteria of several genera.
    Vitovski S
    FEMS Microbiol Lett; 1993 Mar; 108(1):1-5. PubMed ID: 8472917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coregulation by phenylacetyl-coenzyme A-responsive PaaX integrates control of the upper and lower pathways for catabolism of styrene by Pseudomonas sp. strain Y2.
    del Peso-Santos T; Bartolomé-Martín D; Fernández C; Alonso S; García JL; Díaz E; Shingler V; Perera J
    J Bacteriol; 2006 Jul; 188(13):4812-21. PubMed ID: 16788190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.