These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11959826)

  • 1. A changing morphogen gradient is interpreted by continuous transduction flow.
    Bourillot PY; Garrett N; Gurdon JB
    Development; 2002 May; 129(9):2167-80. PubMed ID: 11959826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative analysis of signal transduction from activin receptor to nucleus and its relevance to morphogen gradient interpretation.
    Shimizu K; Gurdon JB
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6791-6. PubMed ID: 10359791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of BMP signaling in early Xenopus development.
    Simeoni I; Gurdon JB
    Dev Biol; 2007 Aug; 308(1):82-92. PubMed ID: 17560972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A.
    Abe T; Furue M; Kondow A; Matsuzaki K; Asashima M
    Mech Dev; 2005 May; 122(5):671-80. PubMed ID: 15817224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development.
    Faure S; Lee MA; Keller T; ten Dijke P; Whitman M
    Development; 2000 Jul; 127(13):2917-31. PubMed ID: 10851136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rab5-mediated endocytosis of activin is not required for gene activation or long-range signalling in Xenopus.
    Hagemann AI; Xu X; Nentwich O; Hyvonen M; Smith JC
    Development; 2009 Aug; 136(16):2803-13. PubMed ID: 19605501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos.
    Howell M; Hill CS
    EMBO J; 1997 Dec; 16(24):7411-21. PubMed ID: 9405370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing of endogenous activin-like signals and regional specification of the Xenopus embryo.
    Lee MA; Heasman J; Whitman M
    Development; 2001 Aug; 128(15):2939-52. PubMed ID: 11532917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinesin-mediated transport of Smad2 is required for signaling in response to TGF-beta ligands.
    Batut J; Howell M; Hill CS
    Dev Cell; 2007 Feb; 12(2):261-74. PubMed ID: 17276343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus.
    Kumano G; Smith WC
    Mech Dev; 2002 Oct; 118(1-2):45-56. PubMed ID: 12351169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both SMAD2 and SMAD3 mediate activin-stimulated expression of the follicle-stimulating hormone beta subunit in mouse gonadotrope cells.
    Bernard DJ
    Mol Endocrinol; 2004 Mar; 18(3):606-23. PubMed ID: 14701940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway.
    Baker JC; Harland RM
    Genes Dev; 1996 Aug; 10(15):1880-9. PubMed ID: 8756346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads.
    Candia AF; Watabe T; Hawley SH; Onichtchouk D; Zhang Y; Derynck R; Niehrs C; Cho KW
    Development; 1997 Nov; 124(22):4467-80. PubMed ID: 9409665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus.
    Hoodless PA; Tsukazaki T; Nishimatsu S; Attisano L; Wrana JL; Thomsen GH
    Dev Biol; 1999 Mar; 207(2):364-79. PubMed ID: 10068469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional morphogen gradient in Xenopus: boundary formation and real-time transduction response.
    Kinoshita T; Jullien J; Gurdon JB
    Dev Dyn; 2006 Dec; 235(12):3189-98. PubMed ID: 17029288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling.
    Kato Y; Habas R; Katsuyama Y; Näär AM; He X
    Nature; 2002 Aug; 418(6898):641-6. PubMed ID: 12167862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Smad nucleocytoplasmic shuttling in living cells.
    Nicolás FJ; De Bosscher K; Schmierer B; Hill CS
    J Cell Sci; 2004 Aug; 117(Pt 18):4113-25. PubMed ID: 15280432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When it pays to rush: interpreting morphogen gradients prior to steady-state.
    Saunders T; Howard M
    Phys Biol; 2009 Nov; 6(4):046020. PubMed ID: 19940351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways.
    Lagna G; Hata A; Hemmati-Brivanlou A; Massagué J
    Nature; 1996 Oct; 383(6603):832-6. PubMed ID: 8893010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smad3 mediates activin-induced transcription of follicle-stimulating hormone beta-subunit gene.
    Suszko MI; Balkin DM; Chen Y; Woodruff TK
    Mol Endocrinol; 2005 Jul; 19(7):1849-58. PubMed ID: 15761025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.