These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11959918)

  • 1. Ab initio protein structure prediction on a genomic scale: application to the Mycoplasma genitalium genome.
    Kihara D; Zhang Y; Lu H; Kolinski A; Skolnick J
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5993-8. PubMed ID: 11959918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints.
    Kihara D; Lu H; Kolinski A; Skolnick J
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10125-30. PubMed ID: 11504922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nativelike topology assembly of small proteins using predicted restraints in Monte Carlo folding simulations.
    Ortiz AR; Kolinski A; Skolnick J
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):1020-5. PubMed ID: 9448278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab initio folding of proteins using restraints derived from evolutionary information.
    Ortiz AR; Kolinski A; Rotkiewicz P; Ilkowski B; Skolnick J
    Proteins; 1999; Suppl 3():177-85. PubMed ID: 10526366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized comparative modeling (GENECOMP): a combination of sequence comparison, threading, and lattice modeling for protein structure prediction and refinement.
    Kolinski A; Betancourt MR; Kihara D; Rotkiewicz P; Skolnick J
    Proteins; 2001 Aug; 44(2):133-49. PubMed ID: 11391776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins.
    Ortiz AR; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1998; ():377-88. PubMed ID: 9697197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments.
    Ortiz AR; Kolinski A; Skolnick J
    J Mol Biol; 1998 Mar; 277(2):419-48. PubMed ID: 9514747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio protein structure prediction via a combination of threading, lattice folding, clustering, and structure refinement.
    Skolnick J; Kolinski A; Kihara D; Betancourt M; Rotkiewicz P; Boniecki M
    Proteins; 2001; Suppl 5():149-56. PubMed ID: 11835492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TOUCHSTONE: a unified approach to protein structure prediction.
    Skolnick J; Zhang Y; Arakaki AK; Kolinski A; Boniecki M; Szilágyi A; Kihara D
    Proteins; 2003; 53 Suppl 6():469-79. PubMed ID: 14579335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio protein structure prediction using chunk-TASSER.
    Zhou H; Skolnick J
    Biophys J; 2007 Sep; 93(5):1510-8. PubMed ID: 17496016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assigning folds to the proteins encoded by the genome of Mycoplasma genitalium.
    Fischer D; Eisenberg D
    Proc Natl Acad Sci U S A; 1997 Oct; 94(22):11929-34. PubMed ID: 9342339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.
    Zhang W; Yang J; He B; Walker SE; Zhang H; Govindarajoo B; Virtanen J; Xue Z; Shen HB; Zhang Y
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):76-86. PubMed ID: 26370505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of residual dipolar couplings as restraints in ab initio protein structure prediction.
    Haliloglu T; Kolinski A; Skolnick J
    Biopolymers; 2003 Dec; 70(4):548-62. PubMed ID: 14648765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fold recognition and ab initio structure predictions using hidden Markov models and beta-strand pair potentials.
    Hubbard TJ; Park J
    Proteins; 1995 Nov; 23(3):398-402. PubMed ID: 8710832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T1 ribonucleases.
    Fetrow JS; Skolnick J
    J Mol Biol; 1998 Sep; 281(5):949-68. PubMed ID: 9719646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of statistical potentials to protein structure refinement from low resolution ab initio models.
    Lu H; Skolnick J
    Biopolymers; 2003 Dec; 70(4):575-84. PubMed ID: 14648767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated structure prediction of weakly homologous proteins on a genomic scale.
    Zhang Y; Skolnick J
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7594-9. PubMed ID: 15126668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating Ab Initio energy into threading approaches for protein structure prediction.
    Shao M; Wang S; Wang C; Yuan X; Li SC; Zheng W; Bu D
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S54. PubMed ID: 21342587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tertiary structure prediction of the KIX domain of CBP using Monte Carlo simulations driven by restraints derived from multiple sequence alignments.
    Ortiz AR; Kolinski A; Skolnick J
    Proteins; 1998 Feb; 30(3):287-94. PubMed ID: 9517544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.