BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 11959961)

  • 41. The world of beta- and gamma-peptides comprised of homologated proteinogenic amino acids and other components.
    Seebach D; Beck AK; Bierbaum DJ
    Chem Biodivers; 2004 Aug; 1(8):1111-239. PubMed ID: 17191902
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Magainins: sequence factors relevant to increased antimicrobial activity and decreased hemolytic activity.
    Cuervo JH; Rodriguez B; Houghten RA
    Pept Res; 1988; 1(2):81-6. PubMed ID: 2980783
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Beta-hairpin peptidomimetics: design, structures and biological activities.
    Robinson JA
    Acc Chem Res; 2008 Oct; 41(10):1278-88. PubMed ID: 18412373
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using fluorous amino acids to probe the effects of changing hydrophobicity on the physical and biological properties of the beta-hairpin antimicrobial peptide protegrin-1.
    Gottler LM; de la Salud Bea R; Shelburne CE; Ramamoorthy A; Marsh EN
    Biochemistry; 2008 Sep; 47(35):9243-50. PubMed ID: 18693751
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The expanding scope of antimicrobial peptide structures and their modes of action.
    Nguyen LT; Haney EF; Vogel HJ
    Trends Biotechnol; 2011 Sep; 29(9):464-72. PubMed ID: 21680034
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthetic mimics of antimicrobial peptides--a versatile ring-opening metathesis polymerization based platform for the synthesis of selective antibacterial and cell-penetrating polymers.
    Lienkamp K; Tew GN
    Chemistry; 2009 Nov; 15(44):11784-800. PubMed ID: 19798714
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Research progress on mechanism of antimicrobial peptides].
    Zhang XG; Fang C; Bai H; Zhou Y; Hou Z
    Sheng Li Ke Xue Jin Zhan; 2011 Feb; 42(1):11-5. PubMed ID: 21595181
    [TBL] [Abstract][Full Text] [Related]  

  • 48. De novo design of α,β-didehydrophenylalanine containing peptides: from models to applications.
    Gupta M; Chauhan VS
    Biopolymers; 2011 Mar; 95(3):161-73. PubMed ID: 21053260
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predicting antimicrobial peptides from eukaryotic genomes: in silico strategies to develop antibiotics.
    Amaral AC; Silva ON; Mundim NC; de Carvalho MJ; Migliolo L; Leite JR; Prates MV; Bocca AL; Franco OL; Felipe MS
    Peptides; 2012 Oct; 37(2):301-8. PubMed ID: 22884922
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PhytAMP: a database dedicated to antimicrobial plant peptides.
    Hammami R; Ben Hamida J; Vergoten G; Fliss I
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D963-8. PubMed ID: 18836196
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface activity of amphiphilic helical beta-peptides from molecular dynamics simulation.
    Miller CA; Abbott NL; de Pablo JJ
    Langmuir; 2009 Mar; 25(5):2811-23. PubMed ID: 19437698
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers.
    Patch JA; Barron AE
    Curr Opin Chem Biol; 2002 Dec; 6(6):872-7. PubMed ID: 12470744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recurrent Neural Network Model for Constructive Peptide Design.
    Müller AT; Hiss JA; Schneider G
    J Chem Inf Model; 2018 Feb; 58(2):472-479. PubMed ID: 29355319
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of facially amphiphilic versus segregated monomers in the design of antibacterial copolymers.
    Gabriel GJ; Maegerlein JA; Nelson CF; Dabkowski JM; Eren T; Nüsslein K; Tew GN
    Chemistry; 2009; 15(2):433-9. PubMed ID: 19021176
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spectroscopic study of antimicrobial peptides: Structure and functional activity.
    Skvortsova P; Valiullina Y; Baranova N; Faizullin D; Zuev Y; Ermakova E
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120273. PubMed ID: 34425316
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unravelling the antimicrobial activity of peptide hydrogel systems: current and future perspectives.
    Cross ER; Coulter SM; Pentlavalli S; Laverty G
    Soft Matter; 2021 Sep; 17(35):8001-8021. PubMed ID: 34525154
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immobilization of antimicrobial peptides on reverse osmosis polyamide membranes: potential biofilm inhibitors?
    Berliner K; Hershkovitz E; Ronen Z; Kasher R
    Adv Exp Med Biol; 2009; 611():241-2. PubMed ID: 19400177
    [No Abstract]   [Full Text] [Related]  

  • 58. Prediction of bioactive peptides using artificial neural networks.
    Andreu D; Torrent M
    Methods Mol Biol; 2015; 1260():101-18. PubMed ID: 25502378
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Beyond Amphiphilic Balance: Changing Subunit Stereochemistry Alters the Pore-Forming Activity of Nylon-3 Polymers.
    Liu L; Courtney KC; Huth SW; Rank LA; Weisblum B; Chapman ER; Gellman SH
    J Am Chem Soc; 2021 Mar; 143(8):3219-3230. PubMed ID: 33611913
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Peptide-Based Polymer-Polyoxometalate Supramolecular Structure with a Differed Antimicrobial Mechanism.
    Datta LP; Mukherjee R; Biswas S; Das TK
    Langmuir; 2017 Dec; 33(49):14195-14208. PubMed ID: 29135264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.