BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11959986)

  • 1. The frameshift signal of HIV-1 involves a potential intramolecular triplex RNA structure.
    Dinman JD; Richter S; Plant EP; Taylor RC; Hammell AB; Rana TM
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5331-6. PubMed ID: 11959986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1.
    Dulude D; Baril M; Brakier-Gingras L
    Nucleic Acids Res; 2002 Dec; 30(23):5094-102. PubMed ID: 12466532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct structural evidence for formation of a stem-loop structure involved in ribosomal frameshifting in human immunodeficiency virus type 1.
    Kang H
    Biochim Biophys Acta; 1998 Apr; 1397(1):73-8. PubMed ID: 9545540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The structure of the frameshift stimulatory signal in HIV-1 RNA: a potential target for the treatment of patients infected with HIV].
    Dulude D; Brakier-Gingras L
    Med Sci (Paris); 2006 Nov; 22(11):969-72. PubMed ID: 17101099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop.
    Marcheschi RJ; Staple DW; Butcher SE
    J Mol Biol; 2007 Oct; 373(3):652-63. PubMed ID: 17868691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity.
    Garcia-Miranda P; Becker JT; Benner BE; Blume A; Sherer NM; Butcher SE
    J Virol; 2016 Aug; 90(15):6906-6917. PubMed ID: 27194769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulated ribosomal frameshifting by an RNA-protein interaction.
    Kollmus H; Hentze MW; Hauser H
    RNA; 1996 Apr; 2(4):316-23. PubMed ID: 8634912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of translation frameshift by upstream termination codon.
    Honda A; Nishimura S
    Biochem Biophys Res Commun; 1996 Apr; 221(3):602-8. PubMed ID: 8630007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of ribosomal frameshifting by oligonucleotides targeted to the HIV gag-pol region.
    Vickers TA; Ecker DJ
    Nucleic Acids Res; 1992 Aug; 20(15):3945-53. PubMed ID: 1508680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HIV-1 and Human PEG10 Frameshift Elements Are Functionally Distinct and Distinguished by Novel Small Molecule Modulators.
    Cardno TS; Shimaki Y; Sleebs BE; Lackovic K; Parisot JP; Moss RM; Crowe-McAuliffe C; Mathew SF; Edgar CD; Kleffmann T; Tate WP
    PLoS One; 2015; 10(10):e0139036. PubMed ID: 26447468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative mutational analysis of cis-acting RNA signals for translational frameshifting in HIV-1 and HTLV-2.
    Kim YG; Maas S; Rich A
    Nucleic Acids Res; 2001 Mar; 29(5):1125-31. PubMed ID: 11222762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Test system for determination of HIV-1 frameshifting efficiency in animal cells.
    Reil H; Hauser H
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):288-92. PubMed ID: 2119813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes.
    Qiao Q; Yan Y; Guo J; Du S; Zhang J; Jia R; Ren H; Qiao Y; Li Q
    J Biomol Struct Dyn; 2017 Jun; 35(8):1629-1653. PubMed ID: 27485859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential stability of the mRNA secondary structures in the frameshift site of various HIV type 1 viruses.
    Chang SY; Sutthent R; Auewarakul P; Apichartpiyakul C; Essex M; Lee TH
    AIDS Res Hum Retroviruses; 1999 Nov; 15(17):1591-6. PubMed ID: 10580411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of the HIV-1 frameshift inducing stem-loop RNA.
    Staple DW; Butcher SE
    Nucleic Acids Res; 2003 Aug; 31(15):4326-31. PubMed ID: 12888491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the RNA signal essential for translational frameshifting in HIV-1.
    Gaudin C; Mazauric MH; Traïkia M; Guittet E; Yoshizawa S; Fourmy D
    J Mol Biol; 2005 Jun; 349(5):1024-35. PubMed ID: 15907937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the role of the pseudoknot component in the SRV-1 gag-pro ribosomal frameshift signal: loop lengths and stability of the stem regions.
    ten Dam EB; Verlaan PW; Pleij CW
    RNA; 1995 Apr; 1(2):146-54. PubMed ID: 7585244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element.
    Staple DW; Butcher SE
    J Mol Biol; 2005 Jun; 349(5):1011-23. PubMed ID: 15927637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational dynamics of the frameshift stimulatory structure in HIV-1.
    Ritchie DB; Cappellano TR; Tittle C; Rezajooei N; Rouleau L; Sikkema WKA; Woodside MT
    RNA; 2017 Sep; 23(9):1376-1384. PubMed ID: 28522581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.