These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 11959994)

  • 1. A minimal system allowing tubulation with molecular motors pulling on giant liposomes.
    Roux A; Cappello G; Cartaud J; Prost J; Goud B; Bassereau P
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5394-9. PubMed ID: 11959994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport efficiency of membrane-anchored kinesin-1 motors depends on motor density and diffusivity.
    Grover R; Fischer J; Schwarz FW; Walter WJ; Schwille P; Diez S
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7185-E7193. PubMed ID: 27803325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular transport: from physics to ... biology.
    Roux A; Cuvelier D; Bassereau P; Goud B
    Ann N Y Acad Sci; 2008 Mar; 1123():119-25. PubMed ID: 18375584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of membrane nanotube formation by molecular motors.
    Leduc C; Campàs O; Joanny JF; Prost J; Bassereau P
    Biochim Biophys Acta; 2010 Jul; 1798(7):1418-26. PubMed ID: 19948146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative extraction of membrane nanotubes by molecular motors.
    Leduc C; Campàs O; Zeldovich KB; Roux A; Jolimaitre P; Bourel-Bonnet L; Goud B; Joanny JF; Bassereau P; Prost J
    Proc Natl Acad Sci U S A; 2004 Dec; 101(49):17096-101. PubMed ID: 15569933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinesin motors as molecular machines.
    Endow SA
    Bioessays; 2003 Dec; 25(12):1212-9. PubMed ID: 14635256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination of Kinesin motors pulling on fluid membranes.
    Campàs O; Leduc C; Bassereau P; Casademunt J; Joanny JF; Prost J
    Biophys J; 2008 Jun; 94(12):5009-17. PubMed ID: 18310242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane mediated motor kinetics in microtubule gliding assays.
    Lopes J; Quint DA; Chapman DE; Xu M; Gopinathan A; Hirst LS
    Sci Rep; 2019 Jul; 9(1):9584. PubMed ID: 31270348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane tube formation from giant vesicles by dynamic association of motor proteins.
    Koster G; VanDuijn M; Hofs B; Dogterom M
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15583-8. PubMed ID: 14663143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks.
    McIntosh BB; Pyrpassopoulos S; Holzbaur ELF; Ostap EM
    Curr Biol; 2018 Jan; 28(2):236-248.e5. PubMed ID: 29337076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicomponent and Multiphase Lipid Nanotubes Formed by Gliding Microtubule-Kinesin Motility and Phase-Separated Giant Unilamellar Vesicles.
    Imam ZI; Bachand GD
    Langmuir; 2019 Dec; 35(49):16281-16289. PubMed ID: 31730350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional membrane tube dynamics driven by nonprocessive motors.
    Shaklee PM; Idema T; Koster G; Storm C; Schmidt T; Dogterom M
    Proc Natl Acad Sci U S A; 2008 Jun; 105(23):7993-7. PubMed ID: 18332438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes.
    Zhu C; Zhang Y; Wang Y; Li Q; Mu W; Han X
    Chemistry; 2016 Feb; 22(9):2906-9. PubMed ID: 26756162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale phase behavior on flat and curved membranes.
    Andersen T; Bahadori A; Ott D; Kyrsting A; Reihani SN; Bendix PM
    Nanotechnology; 2014 Dec; 25(50):505101. PubMed ID: 25431845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature.
    Bigay J; Gounon P; Robineau S; Antonny B
    Nature; 2003 Dec; 426(6966):563-6. PubMed ID: 14654841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring microtubule binding kinetics of membrane-bound kinesin motors using supported lipid bilayers.
    Jiang R; Hancock WO
    STAR Protoc; 2021 Sep; 2(3):100691. PubMed ID: 34382017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single giant vesicle rupture events reveal multiple mechanisms of glass-supported bilayer formation.
    Hamai C; Cremer PS; Musser SM
    Biophys J; 2007 Mar; 92(6):1988-99. PubMed ID: 17189305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The E-hook of tubulin interacts with kinesin's head to increase processivity and speed.
    Lakämper S; Meyhöfer E
    Biophys J; 2005 Nov; 89(5):3223-34. PubMed ID: 16100283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexisting stripe- and patch-shaped domains in giant unilamellar vesicles.
    Li L; Cheng JX
    Biochemistry; 2006 Oct; 45(39):11819-26. PubMed ID: 17002282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling bidirectional transport of quantum dot nanoparticles in membrane nanotubes.
    Kuznetsov AV
    Math Biosci; 2011 Aug; 232(2):101-9. PubMed ID: 21609723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.