BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 11960014)

  • 1. Amyloid fibers are water-filled nanotubes.
    Perutz MF; Finch JT; Berriman J; Lesk A
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5591-5. PubMed ID: 11960014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid beta-peptide of amyloid plaques.
    Perutz MF; Pope BJ; Owen D; Wanker EE; Scherzinger E
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5596-600. PubMed ID: 11960015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid.
    Balbirnie M; Grothe R; Eisenberg DS
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2375-80. PubMed ID: 11226247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray diffraction and far-UV CD studies of filaments formed by a leucine-rich repeat peptide: structural similarity to the amyloid fibrils of prions and Alzheimer's disease beta-protein.
    Symmons MF; Buchanan SG; Clarke DT; Jones G; Gay NJ
    FEBS Lett; 1997 Jul; 412(2):397-403. PubMed ID: 9256259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the cross-beta spine of amyloid-like fibrils.
    Nelson R; Sawaya MR; Balbirnie M; Madsen AØ; Riekel C; Grothe R; Eisenberg D
    Nature; 2005 Jun; 435(7043):773-8. PubMed ID: 15944695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers.
    Kishimoto A; Hasegawa K; Suzuki H; Taguchi H; Namba K; Yoshida M
    Biochem Biophys Res Commun; 2004 Mar; 315(3):739-45. PubMed ID: 14975763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-beta order and diversity in nanocrystals of an amyloid-forming peptide.
    Diaz-Avalos R; Long C; Fontano E; Balbirnie M; Grothe R; Eisenberg D; Caspar DL
    J Mol Biol; 2003 Jul; 330(5):1165-75. PubMed ID: 12860136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel beta-sheets and polar zippers in amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p.
    Chan JC; Oyler NA; Yau WM; Tycko R
    Biochemistry; 2005 Aug; 44(31):10669-80. PubMed ID: 16060675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for Ure2p prion filaments and other amyloids: the parallel superpleated beta-structure.
    Kajava AV; Baxa U; Wickner RB; Steven AC
    Proc Natl Acad Sci U S A; 2004 May; 101(21):7885-90. PubMed ID: 15143215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing.
    Lipfert J; Franklin J; Wu F; Doniach S
    J Mol Biol; 2005 Jun; 349(3):648-58. PubMed ID: 15896350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray diffraction analysis of scrapie prion: intermediate and folded structures in a peptide containing two putative alpha-helices.
    Inouye H; Kirschner DA
    J Mol Biol; 1997 May; 268(2):375-89. PubMed ID: 9159477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of the asparagine- and glutamine-rich yeast prions into protein fibrils.
    Bousset L; Savistchenko J; Melki R
    Curr Alzheimer Res; 2008 Jun; 5(3):251-9. PubMed ID: 18537542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion.
    DePace AH; Santoso A; Hillner P; Weissman JS
    Cell; 1998 Jun; 93(7):1241-52. PubMed ID: 9657156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural stability and dynamics of an amyloid-forming peptide GNNQQNY from the yeast prion sup-35.
    Zheng J; Ma B; Tsai CJ; Nussinov R
    Biophys J; 2006 Aug; 91(3):824-33. PubMed ID: 16679374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases.
    Perutz MF; Johnson T; Suzuki M; Finch JT
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5355-8. PubMed ID: 8202492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of polyglutamine toxicity by the yeast Sup35 prion domain in Drosophila.
    Li LB; Xu K; Bonini NM
    J Biol Chem; 2007 Dec; 282(52):37694-701. PubMed ID: 17956866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of low-oligomeric-weight species for prion propagation in the yeast prion system Sup35/Hsp104.
    Narayanan S; Bösl B; Walter S; Reif B
    Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9286-91. PubMed ID: 12876196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry amyloid fibril assembly in a yeast prion peptide is mediated by long-lived structures containing water wires.
    Reddy G; Straub JE; Thirumalai D
    Proc Natl Acad Sci U S A; 2010 Dec; 107(50):21459-64. PubMed ID: 21098298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins.
    Halfmann R; Alberti S; Krishnan R; Lyle N; O'Donnell CW; King OD; Berger B; Pappu RV; Lindquist S
    Mol Cell; 2011 Jul; 43(1):72-84. PubMed ID: 21726811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.