These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1196012)

  • 1. Morphine analgesia: 2-way cross tolerance between systemic and intracerebral (periaqueductal gray) administrations.
    Jacquet YF; Lajtha A
    Life Sci; 1975 Oct; 17(8):1321-4. PubMed ID: 1196012
    [No Abstract]   [Full Text] [Related]  

  • 2. The periaqueductal gray: site of morphine analgesia and tolerance as shown by 2-way cross tolerance between systemic and intracerebral injections.
    Jacquet YF; Lajtha A
    Brain Res; 1976 Feb; 103(3):501-13. PubMed ID: 1252940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paradoxical effects after microinjection of morphine in the periaqueductal gray matter in the rat.
    Jacquet YF; Lajtha A
    Science; 1974 Sep; 185(4156):1055-7. PubMed ID: 4604871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphine-induced and stimulation-produced analgesias at coincident periaqueductal central gray loci: evaluation of analgesic congruence, tolerance, and cross-tolerance.
    Lewis VA; Gebhart GF
    Exp Neurol; 1977 Dec; 57(3):934-55. PubMed ID: 923683
    [No Abstract]   [Full Text] [Related]  

  • 5. Analgesia and hyperreactivity produced by intracranial microinjections of morphine into the periaqueductal gray matter of the rat.
    Sharpe LG; Garnett JE; Cicero TJ
    Behav Biol; 1974 Jul; 11(3):303-13. PubMed ID: 4411999
    [No Abstract]   [Full Text] [Related]  

  • 6. Systematic examination in the rat of brain sites sensitive to the direct application of morphine: observation of differential effects within the periaqueductal gray.
    Yaksh TL; Yeung JC; Rudy TA
    Brain Res; 1976 Sep; 114(1):83-103. PubMed ID: 963546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphine action at central nervous system sites in rat: analgesia or hyperalgesia depending on site and dose.
    Jacquet YF; Lajtha A
    Science; 1973 Nov; 182(4111):490-2. PubMed ID: 4582903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the periaqueductal central gray (PAG) as a morphine-specific locus of action and examination of morphine-induced and stimulation-produced analgesia at coincident PAG loci.
    Lewis VA; Gebhart GF
    Brain Res; 1977 Mar; 124(2):283-303. PubMed ID: 191150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periaqueductal gray neurons response to microiontophoretically injected morphine in naive and morphine-dependent rats.
    Schurr A; Rigor BM; Ho BT; Dafny N
    Brain Res Bull; 1981 Jun; 6(6):473-8. PubMed ID: 6265040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tolerance to morphine analgesia: decreased multiplicative interaction between spinal and supraspinal sites.
    Roerig SC; O'Brien SM; Fujimoto JM; Wilcox GL
    Brain Res; 1984 Aug; 308(2):360-3. PubMed ID: 6548169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphine and ACTH1-24: correlative behavioral excitations following micro-injections in rat periaqueductal gray.
    Jacquet YF; Wolf G
    Brain Res; 1981 Aug; 219(1):214-8. PubMed ID: 6266601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphine and enkephalin: analgesic and epileptic properties.
    Urca G; Frenk H; Liebeskind JC; Taylor AN
    Science; 1977 Jul; 197(4298):83-6. PubMed ID: 867056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of morphine injectedin periadueductal gray on the activity of single units in nucleus raphe magnus of the rat.
    Behbehani MM; Pomeroy SL
    Brain Res; 1978 Jun; 149(1):266-9. PubMed ID: 207397
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of mu 1-opiate receptors in supraspinal opiate analgesia: a microinjection study.
    Bodnar RJ; Williams CL; Lee SJ; Pasternak GW
    Brain Res; 1988 Apr; 447(1):25-34. PubMed ID: 2838129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. D-serine in the midbrain periaqueductal gray contributes to morphine tolerance in rats.
    Cao S; Xiao Z; Sun M; Li Y
    Mol Pain; 2016; 12():. PubMed ID: 27175014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent disruptive effects of periaqueductal gray stimulation on development of morphine tolerance.
    Kesner RP; Priano DJ
    Behav Biol; 1977 Dec; 21(4):462-9. PubMed ID: 603472
    [No Abstract]   [Full Text] [Related]  

  • 17. Morphine tolerance after chronic intracerebroventricular injection in male and female mice.
    Kest B; Hopkins E
    Brain Res; 2001 Feb; 892(1):208-10. PubMed ID: 11172766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amniotic-fluid ingestion enhances the central analgesic effect of morphine.
    Di Pirro JM; Thompson AC; Kristal MB
    Brain Res Bull; 1991 Jun; 26(6):851-5. PubMed ID: 1933405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tolerance to morphine microinjections in the periaqueductal gray (PAG) induces tolerance to systemic, but not intrathecal morphine.
    Siuciak JA; Advokat C
    Brain Res; 1987 Oct; 424(2):311-9. PubMed ID: 3676830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrathecal beta-funaltrexamine antagonizes intracerebroventricular beta-endorphin- but not morphine-induced analgesia in mice.
    Suh HH; Tseng LF
    J Pharmacol Exp Ther; 1988 May; 245(2):587-93. PubMed ID: 2966856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.