BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 11960438)

  • 21. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy.
    Wylie BJ; Franks WT; Rienstra CM
    J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical analysis of residual dipolar coupling patterns in regular secondary structures of proteins.
    Mascioni A; Veglia G
    J Am Chem Soc; 2003 Oct; 125(41):12520-6. PubMed ID: 14531696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of deuteration on solid-state NMR spectra of single peptide crystals and oriented protein samples.
    Long Z; Park SH; Opella SJ
    J Magn Reson; 2019 Dec; 309():106613. PubMed ID: 31677452
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simulation of oriented NMR spectra: Combining molecular dynamics and chemical shift tensor calculations.
    Sternberg U; Witter R
    Magn Reson Chem; 2024 Mar; 62(3):125-144. PubMed ID: 37884439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of variable-angle sample spinning experiments to the measurement of scaled residual dipolar couplings and 15N CSA in soluble proteins.
    Lancelot N; Elbayed K; Piotto M
    J Biomol NMR; 2005 Nov; 33(3):153-61. PubMed ID: 16331420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing the effects of time and spatial averaging in 15N chemical shift/15N-1H dipolar correlation solid state NMR experiments.
    Straus SK; Scott WR; Watts A
    J Biomol NMR; 2003 Aug; 26(4):283-95. PubMed ID: 12815256
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-dimensional chemical shift/heteronuclear dipolar coupling spectra obtained with polarization inversion spin exchange at the magic angle and magic-angle sample spinning (PISEMAMAS).
    Ramamoorthy A; Opella SJ
    Solid State Nucl Magn Reson; 1995 Aug; 4(6):387-92. PubMed ID: 8581437
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy.
    De Angelis AA; Howell SC; Nevzorov AA; Opella SJ
    J Am Chem Soc; 2006 Sep; 128(37):12256-67. PubMed ID: 16967977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous assignment and structure determination of a membrane protein from NMR orientational restraints.
    Marassi FM; Opella SJ
    Protein Sci; 2003 Mar; 12(3):403-11. PubMed ID: 12592011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. (15)N CSA tensors and (15)N-(1)H dipolar couplings of protein hydrophobic core residues investigated by static solid-state NMR.
    Vugmeyster L; Ostrovsky D; Fu R
    J Magn Reson; 2015 Oct; 259():225-31. PubMed ID: 26367322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Weak alignment NMR: a hawk-eyed view of biomolecular structure.
    Bax A; Grishaev A
    Curr Opin Struct Biol; 2005 Oct; 15(5):563-70. PubMed ID: 16140525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional structure of the channel-forming trans-membrane domain of virus protein "u" (Vpu) from HIV-1.
    Park SH; Mrse AA; Nevzorov AA; Mesleh MF; Oblatt-Montal M; Montal M; Opella SJ
    J Mol Biol; 2003 Oct; 333(2):409-24. PubMed ID: 14529626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solid-state NMR and membrane proteins.
    Opella SJ
    J Magn Reson; 2015 Apr; 253():129-37. PubMed ID: 25681966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A device for the measurement of residual chemical shift anisotropy and residual dipolar coupling in soluble and membrane-associated proteins.
    Liu Y; Prestegard JH
    J Biomol NMR; 2010 Aug; 47(4):249-58. PubMed ID: 20506033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of the backbone torsion psi angle by tensor correlation of chemical shift anisotropy and heteronuclear dipole-dipole interaction.
    Mou Y; Tsai TW; Chan JC
    Solid State Nucl Magn Reson; 2007 Apr; 31(2):72-81. PubMed ID: 17329083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular-orientation analysis based on alignment-induced TROSY chemical shift changes.
    Tate S; Shimahara H; Utsunomiya-Tate N
    J Magn Reson; 2004 Dec; 171(2):284-92. PubMed ID: 15546755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of individual transitions in magnetically equivalent spin systems.
    Pervushin K; Vögeli B
    J Am Chem Soc; 2003 Aug; 125(32):9566-7. PubMed ID: 12904004
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved detection of long-range residual dipolar couplings in weakly aligned samples by Lee-Goldburg decoupling of homonuclear dipolar truncation.
    Jensen P; Sass HJ; Grzesiek S
    J Biomol NMR; 2004 Dec; 30(4):443-50. PubMed ID: 15630564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling residual dipolar couplings in high-resolution NMR of proteins by strain induced alignment in a gel.
    Ishii Y; Markus MA; Tycko R
    J Biomol NMR; 2001 Oct; 21(2):141-51. PubMed ID: 11727977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Major groove width variations in RNA structures determined by NMR and impact of 13C residual chemical shift anisotropy and 1H-13C residual dipolar coupling on refinement.
    Tolbert BS; Miyazaki Y; Barton S; Kinde B; Starck P; Singh R; Bax A; Case DA; Summers MF
    J Biomol NMR; 2010 Jul; 47(3):205-19. PubMed ID: 20549304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.