These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 11960727)
1. Indications for chlororespiration in relation to light regime in the marine diatom Thalassiosira weissflogii. Dijkman NA; Kroon BM J Photochem Photobiol B; 2002 Apr; 66(3):179-87. PubMed ID: 11960727 [TBL] [Abstract][Full Text] [Related]
2. Impact of chlororespiration on non-photochemical quenching of chlorophyll fluorescence and on the regulation of the diadinoxanthin cycle in the diatom Thalassiosira pseudonana. Cruz S; Goss R; Wilhelm C; Leegood R; Horton P; Jakob T J Exp Bot; 2011 Jan; 62(2):509-19. PubMed ID: 20876335 [TBL] [Abstract][Full Text] [Related]
3. Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity. Lazár D J Theor Biol; 2003 Feb; 220(4):469-503. PubMed ID: 12623282 [TBL] [Abstract][Full Text] [Related]
4. Photoacclimation State of Thalassiosira weissflogii is not Affected by Changes in Optical Depth Under A Fluctuating Light Regime Simulating Deep Mixing Brown M; Milligan A; Behrenfeld M J Phycol; 2021 Aug; 57(4):1212-1222. PubMed ID: 33590492 [TBL] [Abstract][Full Text] [Related]
5. Membrane potential is involved in regulation of photosynthetic reactions in the marine diatom Thalassiosira weissflogii. Antal TK; Osipov V; Matorin DN; Rubin AB J Photochem Photobiol B; 2011 Feb; 102(2):169-73. PubMed ID: 21131210 [TBL] [Abstract][Full Text] [Related]
6. The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Biochim Biophys Acta; 2009 Jul; 1787(7):929-38. PubMed ID: 19232316 [TBL] [Abstract][Full Text] [Related]
7. Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Isensee K; Erez J; Stoll HM Physiol Plant; 2014 Feb; 150(2):321-38. PubMed ID: 23992373 [TBL] [Abstract][Full Text] [Related]
8. Non-photochemical quenching of chlorophyll a fluorescence by oxidised plastoquinone: new evidences based on modulation of the redox state of the endogenous plastoquinone pool in broken spinach chloroplasts. Haldimann P; Tsimilli-Michael M Biochim Biophys Acta; 2005 Feb; 1706(3):239-49. PubMed ID: 15694352 [TBL] [Abstract][Full Text] [Related]
9. The interrelationship between the lower oxygen limit, chlorophyll fluorescence and the xanthophyll cycle in plants. Wright AH; DeLong JM; Gunawardena AH; Prange RK Photosynth Res; 2011 Mar; 107(3):223-35. PubMed ID: 21290261 [TBL] [Abstract][Full Text] [Related]
10. Ultrafast fluorescence study on the location and mechanism of non-photochemical quenching in diatoms. Miloslavina Y; Grouneva I; Lambrev PH; Lepetit B; Goss R; Wilhelm C; Holzwarth AR Biochim Biophys Acta; 2009 Oct; 1787(10):1189-97. PubMed ID: 19486881 [TBL] [Abstract][Full Text] [Related]
11. Physiological response of marine centric diatoms to ultraviolet radiation, with special reference to cell size. Wu Y; Li Z; Du W; Gao K J Photochem Photobiol B; 2015 Dec; 153():1-6. PubMed ID: 26386622 [TBL] [Abstract][Full Text] [Related]
12. Influence of the diadinoxanthin pool size on photoprotection in the marine planktonic diatom Phaeodactylum tricornutum. Lavaud J; Rousseau B; van Gorkom HJ; Etienne AL Plant Physiol; 2002 Jul; 129(3):1398-406. PubMed ID: 12114593 [TBL] [Abstract][Full Text] [Related]
13. Effect of nitrate enrichment and diatoms on the bioavailability of Fe(III) oxyhydroxide colloids in seawater. Liu FJ; Huang BQ; Li SX; Zheng FY; Huang XG Chemosphere; 2016 Mar; 147():105-13. PubMed ID: 26766021 [TBL] [Abstract][Full Text] [Related]
14. Toward a Holistic Understanding and Models of Nonphotochemical Quenching Effects on In Vivo Fluorometry of Chlorophyll a in Coastal Waters. Xie Y; Wikfors GH; Dixon MS; Guy L; Krisak M; Li Y Photochem Photobiol; 2023; 99(3):1010-1019. PubMed ID: 36094140 [TBL] [Abstract][Full Text] [Related]
15. Changes in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure. Morelli E; Ferrara R; Bellini B; Dini F; Di Giuseppe G; Fantozzi L Sci Total Environ; 2009 Dec; 408(2):286-93. PubMed ID: 19846208 [TBL] [Abstract][Full Text] [Related]
16. Response of the ubiquitous pelagic diatom Thalassiosira weissflogii to darkness and anoxia. Kamp A; Stief P; Knappe J; de Beer D PLoS One; 2013; 8(12):e82605. PubMed ID: 24312664 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the influence of chlororespiration on the regulation of photosynthesis in the glaucophyte Cyanophora paradoxa. Misumi M; Sonoike K Sci Rep; 2017 Apr; 7():46100. PubMed ID: 28387347 [TBL] [Abstract][Full Text] [Related]
18. Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity. Yang G; Gao K Mar Environ Res; 2012 Aug; 79():142-51. PubMed ID: 22770534 [TBL] [Abstract][Full Text] [Related]
19. [Growth and photosynthetic activity of diatom Thalassiosira weissflogii at decreasing salinity]. Radchenko IG; Il'iash LV Izv Akad Nauk Ser Biol; 2006; (3):306-13. PubMed ID: 16771144 [TBL] [Abstract][Full Text] [Related]
20. A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Grouneva I; Jakob T; Wilhelm C; Goss R Plant Cell Physiol; 2008 Aug; 49(8):1217-25. PubMed ID: 18587148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]