These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 11960798)

  • 1. Contribution of the superior colliculus and the mesencephalic reticular formation to gaze control.
    Waitzman DM; Pathmanathan J; Presnell R; Ayers A; DePalma S
    Ann N Y Acad Sci; 2002 Apr; 956():111-29. PubMed ID: 11960798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of reversible inactivation of the primate mesencephalic reticular formation. I. Hypermetric goal-directed saccades.
    Waitzman DM; Silakov VL; DePalma-Bowles S; Ayers AS
    J Neurophysiol; 2000 Apr; 83(4):2260-84. PubMed ID: 10758133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mesencephalic reticular formation as a conduit for primate collicular gaze control: tectal inputs to neurons targeting the spinal cord and medulla.
    Perkins E; Warren S; May PJ
    Anat Rec (Hoboken); 2009 Aug; 292(8):1162-81. PubMed ID: 19645020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys.
    Freedman EG; Stanford TR; Sparks DL
    J Neurophysiol; 1996 Aug; 76(2):927-52. PubMed ID: 8871209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central mesencephalic reticular formation (cMRF) neurons discharging before and during eye movements.
    Waitzman DM; Silakov VL; Cohen B
    J Neurophysiol; 1996 Apr; 75(4):1546-72. PubMed ID: 8727396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaze shifts evoked by electrical stimulation of the superior colliculus in the head-unrestrained cat. II. Effect of muscimol inactivation of the caudal fastigial nucleus.
    Guillaume A; Pélisson D
    Eur J Neurosci; 2001 Oct; 14(8):1345-59. PubMed ID: 11703463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics and eye-head coordination of gaze shifts evoked from different sites in the superior colliculus of the cat.
    Guillaume A; Pélisson D
    J Physiol; 2006 Dec; 577(Pt 3):779-94. PubMed ID: 17023510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projections from the superior colliculus to a region of the central mesencephalic reticular formation (cMRF) associated with horizontal saccadic eye movements.
    Cohen B; Büttner-Ennever JA
    Exp Brain Res; 1984; 57(1):167-76. PubMed ID: 6519224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus.
    Cowie RJ; Robinson DL
    J Neurophysiol; 1994 Dec; 72(6):2648-64. PubMed ID: 7897481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurons in the primate superior colliculus coding for arm movements in gaze-related coordinates.
    Stuphorn V; Bauswein E; Hoffmann KP
    J Neurophysiol; 2000 Mar; 83(3):1283-99. PubMed ID: 10712456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges.
    Munoz DP; Guitton D; Pélisson D
    J Neurophysiol; 1991 Nov; 66(5):1642-66. PubMed ID: 1765799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity.
    Paré M; Crommelinck M; Guitton D
    Exp Brain Res; 1994; 101(1):123-39. PubMed ID: 7843291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command.
    Freedman EG; Sparks DL
    J Neurophysiol; 1997 Sep; 78(3):1669-90. PubMed ID: 9310452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of superior colliculus in adaptive eye-head coordination during gaze shifts.
    Constantin AG; Wang H; Crawford JD
    J Neurophysiol; 2004 Oct; 92(4):2168-84. PubMed ID: 15190087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.
    Paré M; Guitton D
    J Neurophysiol; 1998 Jun; 79(6):3060-76. PubMed ID: 9636108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of reversible inactivation of the primate mesencephalic reticular formation. II. Hypometric vertical saccades.
    Waitzman DM; Silakov VL; DePalma-Bowles S; Ayers AS
    J Neurophysiol; 2000 Apr; 83(4):2285-99. PubMed ID: 10758134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eye position modulates the electromyographic responses of neck muscles to electrical stimulation of the superior colliculus in the alert cat.
    Hadjidimitrakis K; Moschovakis AK; Dalezios Y; Grantyn A
    Exp Brain Res; 2007 May; 179(1):1-16. PubMed ID: 17091287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergent synaptic inputs from the caudal fastigial nucleus and the superior colliculus onto pontine and pontomedullary reticulospinal neurons.
    Takahashi M; Sugiuchi Y; Shinoda Y
    J Neurophysiol; 2014 Feb; 111(4):849-67. PubMed ID: 24285869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The superior colliculus and movements of the head and eyes in cats.
    Harris LR
    J Physiol; 1980 Mar; 300():367-91. PubMed ID: 6770082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial characteristics of neurons in the central mesencephalic reticular formation (cMRF) of head-unrestrained monkeys.
    Pathmanathan JS; Presnell R; Cromer JA; Cullen KE; Waitzman DM
    Exp Brain Res; 2006 Jan; 168(4):455-70. PubMed ID: 16292575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.