These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 11960948)
1. Effects of muscle activation on fatigue and metabolism in human skeletal muscle. Russ DW; Vandenborne K; Walter GA; Elliott M; Binder-Macleod SA J Appl Physiol (1985); 2002 May; 92(5):1978-86. PubMed ID: 11960948 [TBL] [Abstract][Full Text] [Related]
2. Effects of stimulation frequency and pulse duration on fatigue and metabolic cost during a single bout of neuromuscular electrical stimulation. Gondin J; Giannesini B; Vilmen C; Dalmasso C; le Fur Y; Cozzone PJ; Bendahan D Muscle Nerve; 2010 May; 41(5):667-78. PubMed ID: 20082417 [TBL] [Abstract][Full Text] [Related]
3. Factors in fatigue during intermittent electrical stimulation of human skeletal muscle. Russ DW; Vandenborne K; Binder-Macleod SA J Appl Physiol (1985); 2002 Aug; 93(2):469-78. PubMed ID: 12133852 [TBL] [Abstract][Full Text] [Related]
4. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Kesar T; Binder-Macleod S Exp Physiol; 2006 Nov; 91(6):967-76. PubMed ID: 16873456 [TBL] [Abstract][Full Text] [Related]
5. In vivo reduction in ATP cost of contraction is not related to fatigue level in stimulated rat gastrocnemius muscle. Giannesini B; Izquierdo M; Le Fur Y; Cozzone PJ; Bendahan D J Physiol; 2001 Nov; 536(Pt 3):905-15. PubMed ID: 11691882 [TBL] [Abstract][Full Text] [Related]
6. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation. Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940 [TBL] [Abstract][Full Text] [Related]
7. Metabolic costs of isometric force generation and maintenance of human skeletal muscle. Russ DW; Elliott MA; Vandenborne K; Walter GA; Binder-Macleod SA Am J Physiol Endocrinol Metab; 2002 Feb; 282(2):E448-57. PubMed ID: 11788378 [TBL] [Abstract][Full Text] [Related]
8. Combined in situ analysis of metabolic and myoelectrical changes associated with electrically induced fatigue. Darques JL; Bendahan D; Roussel M; Giannesini B; Tagliarini F; Le Fur Y; Cozzone PJ; Jammes Y J Appl Physiol (1985); 2003 Oct; 95(4):1476-84. PubMed ID: 12819224 [TBL] [Abstract][Full Text] [Related]
9. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle. Ratkevicius A; Quistorff B Muscle Nerve; 2002 Mar; 25(3):419-26. PubMed ID: 11870720 [TBL] [Abstract][Full Text] [Related]
10. Quadriceps fatigue caused by catchlike-inducing trains is not altered in old age. Allman BL; Cheng AJ; Rice CL Muscle Nerve; 2004 Dec; 30(6):743-51. PubMed ID: 15468338 [TBL] [Abstract][Full Text] [Related]
11. A mathematical model that predicts the force-frequency relationship of human skeletal muscle. Ding J; Wexler AS; Binder-Macleod SA Muscle Nerve; 2002 Oct; 26(4):477-85. PubMed ID: 12362412 [TBL] [Abstract][Full Text] [Related]
12. Metabolic and nonmetabolic components of fatigue monitored with 31P-NMR. Baker AJ; Carson PJ; Miller RG; Weiner MW Muscle Nerve; 1994 Sep; 17(9):1002-9. PubMed ID: 8065387 [TBL] [Abstract][Full Text] [Related]
13. Similar metabolic perturbations during all-out and constant force exhaustive exercise in humans: a (31)P magnetic resonance spectroscopy study. Burnley M; Vanhatalo A; Fulford J; Jones AM Exp Physiol; 2010 Jul; 95(7):798-807. PubMed ID: 20360422 [TBL] [Abstract][Full Text] [Related]
14. A predictive fatigue model--I: Predicting the effect of stimulation frequency and pattern on fatigue. Ding J; Wexler AS; Binder-Macleod SA IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):48-58. PubMed ID: 12173739 [TBL] [Abstract][Full Text] [Related]
15. Force output during fatigue with progressively increasing stimulation frequency. Griffin L; Jun BG; Covington C; Doucet BM J Electromyogr Kinesiol; 2008 Jun; 18(3):426-33. PubMed ID: 17208012 [TBL] [Abstract][Full Text] [Related]
16. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743 [TBL] [Abstract][Full Text] [Related]
17. Fatigue and recovery of phosphorus metabolites and pH during stimulation of rat skeletal muscle: an evoked electromyography and in vivo 31P-nuclear magnetic resonance spectroscopy study. Mizuno T; Takanashi Y; Yoshizaki K; Kondo M Eur J Appl Physiol Occup Physiol; 1994; 69(2):102-9. PubMed ID: 7805663 [TBL] [Abstract][Full Text] [Related]
18. Dissociation between metabolic and contractile responses during intermittent isometric exercise in man. Saugen E; Vøllestad NK; Gibson H; Martin PA; Edwards RH Exp Physiol; 1997 Jan; 82(1):213-26. PubMed ID: 9023519 [TBL] [Abstract][Full Text] [Related]
19. Comparison of fatigue produced by various electrical stimulation trains. Binder-Macleod SA; Scott WB Acta Physiol Scand; 2001 Jul; 172(3):195-203. PubMed ID: 11472306 [TBL] [Abstract][Full Text] [Related]
20. Influence of activation frequency on cellular signalling pathways during fatiguing contractions in rat skeletal muscle. Russ DW; Lovering RM Exp Physiol; 2006 Nov; 91(6):957-66. PubMed ID: 16857718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]