These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 11961291)

  • 1. Diffraction by partially occupied helices.
    Tsaturyan AK
    Acta Crystallogr A; 2002 May; 58(Pt 3):292-4. PubMed ID: 11961291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffraction of helices with arbitrary periodic ligand binding.
    Gu J; Yu LC
    Acta Crystallogr D Biol Crystallogr; 1999 Dec; 55(Pt 12):2022-7. PubMed ID: 10666578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driving filament sliding: weak binding cross-bridge states, strong binding cross-bridge states, and the power stroke.
    Brenner B; Mählmann E; Mattei T; Kraft T
    Adv Exp Med Biol; 2005; 565():75-91; discussion 371-7. PubMed ID: 16106968
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural changes of actin-bound myosin heads after a quick length change in frog skeletal muscle.
    Yagi N; Iwamoto H; Wakayama J; Inoue K
    Biophys J; 2005 Aug; 89(2):1150-64. PubMed ID: 15894638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct modeling of x-ray diffraction pattern from skeletal muscle in rigor.
    Koubassova NA; Tsaturyan AK
    Biophys J; 2002 Aug; 83(2):1082-97. PubMed ID: 12124288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray diffraction studies of striated muscles.
    Squire JM; Knupp C; Roessle M; Al-Khayat HA; Irving TC; Eakins F; Mok NS; Harford JJ; Reedy MK
    Adv Exp Med Biol; 2005; 565():45-60; discussion 359-69. PubMed ID: 16106966
    [No Abstract]   [Full Text] [Related]  

  • 7. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent distortion of meridional intensity changes during sinusoidal length oscillations of activated skeletal muscle.
    Bagni MA; Colombini B; Amenitsch H; Bernstorff S; Ashley CC; Rapp G; Griffiths PJ
    Biophys J; 2001 Jun; 80(6):2809-22. PubMed ID: 11371455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of actin-myosin motor in muscle.
    Koubassova NA; Tsaturyan AK
    Biochemistry (Mosc); 2011 Dec; 76(13):1484-506. PubMed ID: 22339600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle.
    Tregear RT; Edwards RJ; Irving TC; Poole KJ; Reedy MC; Schmitz H; Towns-Andrews E; Reedy MK
    Biophys J; 1998 Mar; 74(3):1439-51. PubMed ID: 9512040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myosin crossbridge configurations in equilibrium states of vertebrate skeletal muscle. Heads swing axially or turn upside-down between resting and rigor.
    Harford J; Cantino M; Chew M; Denny R; Hudson L; Luther P; Mendelson R; Morris E; Squire J
    Adv Exp Med Biol; 1998; 453():297-308. PubMed ID: 9889842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray diffraction from a helix of any length that displays cumulative azimuthal disorder.
    Mu XQ; Makowski L; Fairchild BM
    Acta Crystallogr A; 1997 Jan; 53 ( Pt 1)():55-62. PubMed ID: 9037747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition from contractile to protractile distortions occurring along an actin filament sliding on myosin molecules.
    Hatori K; Sakamaki J; Honda H; Shimada K; Matsuno K
    Biophys Chem; 2004 Feb; 107(3):283-8. PubMed ID: 14967243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle myosin II structure and function.
    Lutz GJ; Lieber RL
    Exerc Sport Sci Rev; 1999; 27():63-77. PubMed ID: 10791014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of stretch and release on equatorial X-ray diffraction during a twitch contraction of frog skeletal muscle.
    Iwamoto H; Kobayashi T; Amemiya Y; Wakabayashi K
    Biophys J; 1995 Jan; 68(1):227-34. PubMed ID: 7711245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intensity of X-ray reflections from skeletal muscle thin filaments partially occupied with myosin heads: effect of cooperative binding.
    Tamura T; Wakayama J; Fujisawa T; Yagi N; Iwamoto H
    J Muscle Res Cell Motil; 2004; 25(4-5):329-35. PubMed ID: 15548861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical properties of tropomyosin and implications for muscle regulation.
    Phillips GN; Chacko S
    Biopolymers; 1996 Jan; 38(1):89-95. PubMed ID: 8679944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An x-ray diffraction study on early structural changes in skeletal muscle contraction.
    Yagi N
    Biophys J; 2003 Feb; 84(2 Pt 1):1093-102. PubMed ID: 12547790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural alterations of thin actin filaments in muscle contraction by synchrotron X-ray fiber diffraction.
    Wakabayashi K; Sugimoto Y; Takezawa Y; Ueno Y; Minakata S; Oshima K; Matsuo T; Kobayashi T
    Adv Exp Med Biol; 2007; 592():327-40. PubMed ID: 17278377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray recordings reveal how a human disease-linked skeletal muscle α-actin mutation leads to contractile dysfunction.
    Ochala J; Ravenscroft G; McNamara E; Nowak KJ; Iwamoto H
    J Struct Biol; 2015 Dec; 192(3):331-335. PubMed ID: 26407659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.