BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 11961667)

  • 81. Delivery of adenoviral vectors to the prostate for gene therapy.
    Lu Y; Carraher J; Zhang Y; Armstrong J; Lerner J; Rogers WP; Steiner MS
    Cancer Gene Ther; 1999; 6(1):64-72. PubMed ID: 10078965
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Neural cell adhesion molecule 2 as a target molecule for prostate and breast cancer gene therapy.
    Takahashi S; Kato K; Nakamura K; Nakano R; Kubota K; Hamada H
    Cancer Sci; 2011 Apr; 102(4):808-14. PubMed ID: 21214674
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Targeted expression of Escherichia coli purine nucleoside phosphorylase and Fludara® for prostate cancer therapy.
    Xie X; Guo J; Kong Y; Xie GX; Li L; Lv N; Xiao X; Tang J; Wang X; Liu P; Yang M; Xie Z; Wei W; Spencer DM; Xie X
    J Gene Med; 2011 Dec; 13(12):680-91. PubMed ID: 22009763
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Delivery of replication-competent retrovirus expressing Escherichia coli purine nucleoside phosphorylase increases the metabolism of the prodrug, fludarabine phosphate and suppresses the growth of bladder tumor xenografts.
    Kikuchi E; Menendez S; Ozu C; Ohori M; Cordon-Cardo C; Logg CR; Kasahara N; Bochner BH
    Cancer Gene Ther; 2007 Mar; 14(3):279-86. PubMed ID: 17218950
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Calcitonin-specific transcription and splicing targets gene-directed enzyme prodrug therapy to medullary thyroid carcinoma cells.
    Messina M; Yu DM; Both GW; Molloy PL; Robinson BG
    J Clin Endocrinol Metab; 2003 Mar; 88(3):1310-8. PubMed ID: 12629124
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Gene therapy of prostate cancer: p53, suicidal genes, and other targets.
    Boulikas T
    Anticancer Res; 1997; 17(3A):1471-505. PubMed ID: 9179186
    [TBL] [Abstract][Full Text] [Related]  

  • 87. In vivo antitumor activity of intratumoral fludarabine phosphate in refractory tumors expressing E. coli purine nucleoside phosphorylase.
    Sorscher EJ; Hong JS; Allan PW; Waud WR; Parker WB
    Cancer Chemother Pharmacol; 2012 Aug; 70(2):321-9. PubMed ID: 22760227
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Preclinical biodistribution and safety study of reduced expression in immortalized cells/Dickkopf-3-encoding adenoviral vector for prostate cancer gene therapy.
    Sugimoto M; Watanabe M; Kaku H; Li SA; Noguchi H; Ueki H; Sakaguchi M; Huh NH; Nasu Y; Kumon H
    Oncol Rep; 2012 Nov; 28(5):1645-52. PubMed ID: 22941469
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Gene therapy for prostate cancer: where are we now?
    Steiner MS; Gingrich JR
    J Urol; 2000 Oct; 164(4):1121-36. PubMed ID: 10992352
    [TBL] [Abstract][Full Text] [Related]  

  • 90. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound.
    Huber PE; Pfisterer P
    Gene Ther; 2000 Sep; 7(17):1516-25. PubMed ID: 11001372
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Robust prostate-specific expression for targeted gene therapy based on the human kallikrein 2 promoter.
    Xie X; Zhao X; Liu Y; Young CY; Tindall DJ; Slawin KM; Spencer DM
    Hum Gene Ther; 2001 Mar; 12(5):549-61. PubMed ID: 11268287
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Technology evaluation: CN-706, Calydon Inc.
    Doehn C; Jocham D
    Curr Opin Mol Ther; 2000 Dec; 2(6):703-8. PubMed ID: 11249749
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Transrectal gene therapy of the prostate in the canine model.
    Weld KJ; Mayher BE; Allay JA; Cockroft JL; Reed CP; Randolph MM; Lu Y; Steiner MS; Gingrich JR
    Cancer Gene Ther; 2002 Feb; 9(2):189-96. PubMed ID: 11857037
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Development of a prostate-specific promoter for gene therapy against androgen-independent prostate cancer.
    Furuhata S; Ide H; Miura Y; Yoshida T; Aoki K
    Mol Ther; 2003 Mar; 7(3):366-74. PubMed ID: 12668132
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Expression of the prodrug-activating enzyme DT-diaphorase via Ad5 delivery to human colon carcinoma cells in vitro.
    Misra V; Klamut HJ; Rauth AM
    Cancer Gene Ther; 2002 Feb; 9(2):209-17. PubMed ID: 11857040
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Excellent in vivo bystander activity of fludarabine phosphate against human glioma xenografts that express the escherichia coli purine nucleoside phosphorylase gene.
    Hong JS; Waud WR; Levasseur DN; Townes TM; Wen H; McPherson SA; Moore BA; Bebok Z; Allan PW; Secrist JA; Parker WB; Sorscher EJ
    Cancer Res; 2004 Sep; 64(18):6610-5. PubMed ID: 15374975
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Molecular therapy with recombinant p53 adenovirus in an androgen-independent, metastatic human prostate cancer model.
    Ko SC; Gotoh A; Thalmann GN; Zhau HE; Johnston DA; Zhang WW; Kao C; Chung LW
    Hum Gene Ther; 1996 Sep; 7(14):1683-91. PubMed ID: 8886839
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Enhanced growth inhibition of prostate cancer in vitro and in vivo by a recombinant adenovirus-mediated dual-aptamer modified drug delivery system.
    Jing P; Cao S; Xiao S; Zhang X; Ke S; Ke F; Yu X; Wang L; Wang S; Luo Y; Zhong Z
    Cancer Lett; 2016 Dec; 383(2):230-242. PubMed ID: 27721020
    [TBL] [Abstract][Full Text] [Related]  

  • 99. In situ gene therapy for prostate cancer.
    Thompson TC
    Oncol Res; 1999; 11(1):1-8. PubMed ID: 10451026
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Development of a high-efficiency method for gene marking of Dunning prostate cancer cell lines with the enzyme beta-galactosidase.
    Rinker-Schaeffer CW; Wharam JF; Simons J; Isaacs JT
    Prostate; 1996 Jul; 29(1):60-4. PubMed ID: 8685057
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.