BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1391 related articles for article (PubMed ID: 11962759)

  • 1. Nonvisual photoreceptors of the deep brain, pineal organs and retina.
    Vigh B; Manzano MJ; Zádori A; Frank CL; Lukáts A; Röhlich P; Szél A; Dávid C
    Histol Histopathol; 2002 Apr; 17(2):555-90. PubMed ID: 11962759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain.
    Vígh B; Manzano e Silva MJ; Frank CL; Vincze C; Czirok SJ; Szabó A; Lukáts A; Szél A
    Histol Histopathol; 2004 Apr; 19(2):607-28. PubMed ID: 15024719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peripheral autonomic nerves of human pineal organ terminate on vessels, their supposed role in the periodic secretion of pineal melatonin.
    Manzano E Silva MJ; Singh R; Haldar C; Vigh B; Szél Á
    APMIS; 2012 Aug; 120(8):628-34. PubMed ID: 22779685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actual problems of the cerebrospinal fluid-contacting neurons.
    Vigh B; Vigh-Teichmann I
    Microsc Res Tech; 1998 Apr; 41(1):57-83. PubMed ID: 9550137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian photoreception in vertebrates.
    Doyle S; Menaker M
    Cold Spring Harb Symp Quant Biol; 2007; 72():499-508. PubMed ID: 18419310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative ultrastructure and cytochemistry of the avian pineal organ.
    Fejér Z; Röhlich P; Szél A; Dávid C; Zádori A; Manzano MJ; Vígh B
    Microsc Res Tech; 2001 Apr; 53(1):12-24. PubMed ID: 11279666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of feeding rhythms through a multiple-photoreceptor system in an avian model of blindness.
    Valdez DJ; Nieto PS; Díaz NM; Garbarino-Pico E; Guido ME
    FASEB J; 2013 Jul; 27(7):2702-12. PubMed ID: 23585397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative histology of pineal calcification.
    Vígh B; Szél A; Debreceni K; Fejér Z; Manzano e Silva MJ; Vígh-Teichmann I
    Histol Histopathol; 1998 Jul; 13(3):851-70. PubMed ID: 9690142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoreactive pinopsin in pineal and retinal photoreceptors of various vertebrates.
    Fejér Z; Szél A; Röhlich P; Görcs T; Manzano e Silva MJ; Vígh B
    Acta Biol Hung; 1997; 48(4):463-71. PubMed ID: 9847459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pineal organ as a folded retina: immunocytochemical localization of opsins.
    Vígh B; Röhlich P; Görcs T; Manzano e Silva MJ; Szél A; Fejér Z; Vígh-Teichmann I
    Biol Cell; 1998 Dec; 90(9):653-9. PubMed ID: 10085541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-visual photoreception by a variety of vertebrate opsins.
    Kojima D; Fukada Y
    Novartis Found Symp; 1999; 224():265-79; discussion 279-82. PubMed ID: 10614056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of the ultrastructure and opsin immunocytochemistry of the pineal organ and retina of the deep-sea fish Chimaera monstrosa.
    Vigh-Teichmann I; Szél A; Röhlich P; Vigh B
    Exp Biol; 1990; 48(6):361-71. PubMed ID: 2142101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cerebrospinal fluid-contacting neuron: a peculiar cell type of the central nervous system. Immunocytochemical aspects.
    Vigh-Teichmann I; Vigh B
    Arch Histol Cytol; 1989; 52 Suppl():195-207. PubMed ID: 2479402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructure and opsin immunocytochemistry of the pineal complex of the larval Arctic charr Salvelinus alpinus: a comparison with the retina.
    Vigh-Teichmann I; Ali MA; Szél A; Vigh B
    J Pineal Res; 1991; 10(4):196-209. PubMed ID: 1833524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photic regulation of pineal function. Analogies between retinal and pineal photoreception.
    Meissl H
    Biol Cell; 1997 Dec; 89(9):549-54. PubMed ID: 9673006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inner retinal circadian clocks and non-visual photoreceptors: novel players in the circadian system.
    Guido ME; Garbarino-Pico E; Contin MA; Valdez DJ; Nieto PS; Verra DM; Acosta-Rodriguez VA; de Zavalía N; Rosenstein RE
    Prog Neurobiol; 2010 Dec; 92(4):484-504. PubMed ID: 20736045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Pupil and melanopsin photoreception].
    Ishikawa H
    Nippon Ganka Gakkai Zasshi; 2013 Mar; 117(3):246-68; discussion 269. PubMed ID: 23631256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors.
    Zhu X; Li A; Brown B; Weiss ER; Osawa S; Craft CM
    Mol Vis; 2002 Dec; 8():462-71. PubMed ID: 12486395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pineal organ as a component of the biological clock. Phylogenetic and ontogenetic considerations.
    Korf HW
    Ann N Y Acad Sci; 1994 May; 719():13-42. PubMed ID: 8010588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomic nerves terminating on microvessels in the pineal organs of various submammalian vertebrates.
    Frank CL; Czirok SJ; Vincze C; Rácz G; Szél A; Vígh B
    Acta Biol Hung; 2005; 56(1-2):35-41. PubMed ID: 15813212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 70.