BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11963277)

  • 1. Self-induced versus reactive triggering of synchronous movements in a deafferented patient and control subjects.
    Stenneken P; Aschersleben G; Cole J; Prinz W
    Psychol Res; 2002 Feb; 66(1):40-9. PubMed ID: 11963277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the primary somatosensory cortex in an auditorily paced finger tapping task.
    Pollok B; Müller K; Aschersleben G; Schnitzler A; Prinz W
    Exp Brain Res; 2004 May; 156(1):111-7. PubMed ID: 15007587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of sensory information in the production of periodic finger-tapping sequences.
    Billon M; Semjen A; Cole J; Gauthier G
    Exp Brain Res; 1996 Jun; 110(1):117-30. PubMed ID: 8817263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timing of bimanual movements and deafferentation: implications for the role of sensory movement effects.
    Drewing K; Stenneken P; Cole J; Prinz W; Aschersleben G
    Exp Brain Res; 2004 Sep; 158(1):50-7. PubMed ID: 15007586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of short timing responses: a comparative study with a deafferented patient.
    Fleury M; Macar F; Bard C; Teasdale N; Paillard J; Lamarre Y; Forget R
    Neuropsychologia; 1994 Nov; 32(11):1435-40. PubMed ID: 7877750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of sensory feedback on the timing of movements: evidence from deafferented patients.
    Stenneken P; Prinz W; Cole J; Paillard J; Aschersleben G
    Brain Res; 2006 Apr; 1084(1):123-31. PubMed ID: 16564509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronizing actions with events: the role of sensory information.
    Aschersleben G; Prinz W
    Percept Psychophys; 1995 Apr; 57(3):305-17. PubMed ID: 7770322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of afferent information in the timing of motor commands: a comparative study with a deafferented patient.
    Bard C; Paillard J; Lajoie Y; Fleury M; Teasdale N; Forget R; Lamarre Y
    Neuropsychologia; 1992 Feb; 30(2):201-6. PubMed ID: 1560897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of tactile reafference to temporal regularity during bimanual finger tapping.
    Drewing K; Hennings M; Aschersleben G
    Psychol Res; 2002 Feb; 66(1):60-70. PubMed ID: 11963279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimanual circling in deafferented patients: evidence for a role of visual forward models.
    Mechsner F; Stenneken P; Cole J; Aschersleben G; Prinz W
    J Neuropsychol; 2007 Sep; 1(2):259-82. PubMed ID: 19331020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tapping with peripheral nerve block. a role for tactile feedback in the timing of movements.
    Aschersleben G; Gehrke J; Prinz W
    Exp Brain Res; 2001 Feb; 136(3):331-9. PubMed ID: 11243475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of the cerebellum to self-initiated synchronized movements: a PET study.
    Blouin JS; Bard C; Paillard J
    Exp Brain Res; 2004 Mar; 155(1):63-8. PubMed ID: 15064886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-moved target eye tracking in control and deafferented subjects: roles of arm motor command and proprioception in arm-eye coordination.
    Vercher JL; Gauthier GM; Guédon O; Blouin J; Cole J; Lamarre Y
    J Neurophysiol; 1996 Aug; 76(2):1133-44. PubMed ID: 8871226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of onset of afferent responses and of use of kinesthetic information for control of movement in normal and cerebellar-impaired subjects.
    Grill SE; Hallett M; McShane LM
    Exp Brain Res; 1997 Jan; 113(1):33-47. PubMed ID: 9028773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The distinction between tapping and circle drawing with and without tactile feedback: an examination of the sources of timing variance.
    Studenka BE; Zelaznik HN; Balasubramaniam R
    Q J Exp Psychol (Hove); 2012; 65(6):1086-100. PubMed ID: 22332846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating motor preparation in synchronous hand and foot movements under reactive vs. predictive control.
    Bui A; Maslovat D; Lajoie Y; Carlsen AN
    Exp Brain Res; 2023 Apr; 241(4):1041-1052. PubMed ID: 36869897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential controls over tactile detection in humans by motor commands and peripheral reafference.
    Chapman CE; Beauchamp E
    J Neurophysiol; 2006 Sep; 96(3):1664-75. PubMed ID: 16775211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of proprioceptive information to preferred versus constrained space-time behavior in rhythmical movements.
    Bonnard M; Pailhous J
    Exp Brain Res; 1999 Oct; 128(4):568-72. PubMed ID: 10541754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of aging on control of timing and force of finger tapping.
    Sasaki H; Masumoto J; Inui N
    Motor Control; 2011 Apr; 15(2):175-86. PubMed ID: 21628723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is proprioception important for the timing of motor activities?
    LaRue J; Bard C; Fleury M; Teasdale N; Paillard J; Forget R; Lamarre Y
    Can J Physiol Pharmacol; 1995 Feb; 73(2):255-61. PubMed ID: 7621364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.