BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11963550)

  • 1. [Effects of orthophosphates and condensed phosphates on chemical and spectral properties of the humus derivatives of phosphorus and metals].
    Kudeiarova AIu
    Izv Akad Nauk Ser Biol; 2002; (2):219-29. PubMed ID: 11963550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The changes in the structure and properties of alkali-soluble humic substances in phosphorus-enriched gray forest soil].
    Kudeiarova AIu
    Izv Akad Nauk Ser Biol; 2003; (6):754-65. PubMed ID: 14994481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study of humic substance transformation in phosphatic soil in terms of nucleophilicity and electrophilicity].
    Kudeiarova AIu
    Izv Akad Nauk Ser Biol; 2006; (3):365-76. PubMed ID: 16771151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Properties of native and ortho- and pyrophosphate-modified Fe-humic complexes of the soil and their effect on solubility and toxicity of the products of exogenous Zn binding].
    Kudeiarova AIu; Guzev VS
    Izv Akad Nauk Ser Biol; 2005; (3):364-74. PubMed ID: 16004270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal immobilization and phosphorus leaching after stabilization of pyrite ash contaminated soil by phosphate amendments.
    Zupančič M; Lavrič S; Bukovec P
    J Environ Monit; 2012 Feb; 14(2):704-10. PubMed ID: 22240857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.
    Chaturvedi PK; Seth CS; Misra V
    J Hazard Mater; 2007 Aug; 147(3):698-705. PubMed ID: 17303325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil.
    Debela F; Arocena JM; Thring RW; Whitcombe T
    J Environ Manage; 2013 Feb; 116():156-62. PubMed ID: 23313859
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size distribution, complexing capacity, and stability of phosphate-metal-humic complexes.
    Guardado I; Urrutia O; García-Mina JM
    J Agric Food Chem; 2007 Jan; 55(2):408-13. PubMed ID: 17227072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of temperature and time on phosphorus removal in swine manure during batch aeration.
    Ndegwa PM; Zhu J; Luo A
    J Environ Sci Health B; 2003 Jan; 38(1):73-87. PubMed ID: 12602825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Microbiological and chemical investigations into amelioration of spruce raw humus on phosphorus-deficient sites in the Mittelgebirge (author's transl)].
    Mai H; Fiedler HJ
    Zentralbl Bakteriol Naturwiss; 1978; 133(1):17-33. PubMed ID: 664931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational spectra and factor group analysis of M₀.₅₀TiOPO₄ oxyphosphates (M=Mg, Zn, Ni, Co, Fe and Cu).
    Eddahaoui K; Benmokhtar S; Manoun B; Belaaouad S; Lazor P
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 99():81-9. PubMed ID: 23041926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy.
    Vogel C; Adam C; Sekine R; Schiller T; Lipiec E; McNaughton D
    Appl Spectrosc; 2013 Oct; 67(10):1165-70. PubMed ID: 24067573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphates, phosphites, and phosphides in environmental samples.
    Morton SC; Glindemann D; Edwards MA
    Environ Sci Technol; 2003 Mar; 37(6):1169-74. PubMed ID: 12680671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate treatment of firing range soils: lead fixation or phosphorus release?
    Dermatas D; Chrysochoou M; Grubb DG; Xu X
    J Environ Qual; 2008; 37(1):47-56. PubMed ID: 18178877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physico-chemical properties and leaching behaviors of phosphatic clay for immobilizing heavy metals.
    Hwang A; Ji W; Kweon B; Khim J
    Chemosphere; 2008 Jan; 70(6):1141-5. PubMed ID: 17910974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Forms and bioavailability of phosphorus in surface sediments from Sungo Bay].
    Jiang ZJ; Fang JG; Zhang JH; Mao YZ; Wang W
    Huan Jing Ke Xue; 2007 Dec; 28(12):2783-8. PubMed ID: 18290437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate recycling in the phosphorus industry.
    Schipper WJ; Klapwijk A; Potjer B; Rulkens WH; Temmink BG; Kiestra FD; Lijmbach AC
    Environ Technol; 2001 Nov; 22(11):1337-45. PubMed ID: 11804355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Soil phosphorus form and fractionation scheme: a review].
    Zhang L; Wu N; Wu Y; Luo P; Liu L; Chen WN; Hu HY
    Ying Yong Sheng Tai Xue Bao; 2009 Jul; 20(7):1775-82. PubMed ID: 19899484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant uptake/bioavailability of heavy metals from the contaminated soil after treatment with humus soil and hydroxyapatite.
    Misra V; Chaturvedi PK
    Environ Monit Assess; 2007 Oct; 133(1-3):169-76. PubMed ID: 17286176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of different phosphate amendments on availability of metals in contaminated soil.
    Chen S; Xu M; Ma Y; Yang J
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.