These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11963890)

  • 1. Comparison of catalytic properties of free and immobilized cellobiase novozym 188.
    Calsavara LP; De Moraes FF; Zanin GM
    Appl Biochem Biotechnol; 2001; 91-93():615-26. PubMed ID: 11963890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal stability and energy of deactivation of free and immobilized amyloglucosidase in the saccharification of liquefied cassava starch.
    Zanin GM; De Moraes FF
    Appl Biochem Biotechnol; 1998; 70-72():383-94. PubMed ID: 9627390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Studies on immobilized cellobiase].
    Shen XL; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):236-9. PubMed ID: 15966329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of cellobiase by covalent coupling to soluble polysaccharide.
    Abdel-Naby MA
    Microbiol Res; 1999 Sep; 154(2):213-8. PubMed ID: 10522387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic properties of the immobilized Aspergillus tamarii xylanase.
    Gouda MK; Abdel-Naby MA
    Microbiol Res; 2002; 157(4):275-81. PubMed ID: 12501991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis.
    Verma ML; Chaudhary R; Tsuzuki T; Barrow CJ; Puri M
    Bioresour Technol; 2013 May; 135():2-6. PubMed ID: 23419989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of silica-derived nano-supporters on cellobiase after immobilization.
    Wang P; Hu X; Cook S; Hwang HM
    Appl Biochem Biotechnol; 2009 Jul; 158(1):88-96. PubMed ID: 18679593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite.
    Wang F; Su RX; Qi W; Zhang MJ; He ZM
    Prep Biochem Biotechnol; 2010; 40(1):57-64. PubMed ID: 20024795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly enhanced activity and stability via affinity induced immobilization β-glucosidase from Aspergillus niger onto amino-based silica for the biotransformation of ginsenoside Rb1.
    Wu X; Qu B; Liu Y; Ren X; Wang S; Quan Y
    J Chromatogr A; 2021 Sep; 1653():462388. PubMed ID: 34280789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions.
    Vazquez-Ortega PG; Alcaraz-Fructuoso MT; Rojas-Contreras JA; López-Miranda J; Fernandez-Lafuente R
    Enzyme Microb Technol; 2018 Mar; 110():38-45. PubMed ID: 29310854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling cellobiose hydrolysis with integrated kinetic models.
    Calsavara LP; De Moraes FF; Zanin GM
    Appl Biochem Biotechnol; 1999; 77-79():789-806. PubMed ID: 15304698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of amyloglucosidase onto macroporous cryogels for continuous glucose production from starch.
    Uygun M; Akduman B; Ergönül B; Aktaş Uygun D; Akgöl S; Denizli A
    J Biomater Sci Polym Ed; 2015; 26(16):1112-25. PubMed ID: 26235358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study on isoflavone active aglycone preparation by immobilized beta-glucosidase from Aspergillus niger].
    Pan LH; Luo JP; Jiang ST
    Sheng Wu Gong Cheng Xue Bao; 2007 Nov; 23(6):1060-4. PubMed ID: 18257237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow kinetics of immobilized beta-glucosidase.
    Hsuanyu Y; Laidler KJ
    Biochem Cell Biol; 1986 Feb; 64(2):139-45. PubMed ID: 3087382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring novel ultrafine Eri silk bioscaffold for enzyme stabilisation in cellobiose hydrolysis.
    Verma ML; Rajkhowa R; Wang X; Barrow CJ; Puri M
    Bioresour Technol; 2013 Oct; 145():302-6. PubMed ID: 23462595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of Aspergillus niger tannase by microencapsulation and its kinetic characteristics.
    Yu X; Li Y; Wang C; Wu D
    Biotechnol Appl Biochem; 2004 Oct; 40(Pt 2):151-5. PubMed ID: 14683525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of Aspergillus niger β-glucosidase and its catalytic properties.
    Ahmed SA; El-Shayeb NM; Hashem AG; Saleh SA; Abdel-Fattah AF
    Braz J Microbiol; 2015 Mar; 46(1):23-8. PubMed ID: 26221085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and properties of three cellobiases from Aspergillus niger A20.
    Abdel-Naby MA; Osman MY; Abdel-Fattah AF
    Appl Biochem Biotechnol; 1999 Jan; 76(1):33-44. PubMed ID: 10327588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the performance of immobilized β-glucosidase using a microreactor.
    Wei C; Zhou Y; Zhuang W; Li G; Jiang M; Zhang H
    J Biosci Bioeng; 2018 Apr; 125(4):377-384. PubMed ID: 29102385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.