These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11963897)

  • 21. [Catalytic properties of glucoamylase immobilized on the synthetic carbon material Sibunit].
    Kovalenko GA; Perminova LV; Terent'eva TG; Plaksin GV
    Prikl Biokhim Mikrobiol; 2007; 43(4):412-8. PubMed ID: 17929567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromatographic evaluation of sorption and diffusion characteristics of glucose, maltose and maltotriose in silica gels.
    Ching CB; Hidajat K; Rathor MN
    J Chromatogr; 1989 Feb; 463(2):261-70. PubMed ID: 2708484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic properties of the cysteinesulfinic acid derivative of the catalytic-base mutant Glu400-->Cys of glucoamylase from Aspergillus awamori.
    Fierobe HP; Clarke AJ; Tull D; Svensson B
    Biochemistry; 1998 Mar; 37(11):3753-9. PubMed ID: 9521694
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of substrate presoaking treatment of support materials on the activity of immobilized glucoamylase.
    Mukataka S; Negishi S; Sato S; Takahashi J
    Enzyme Microb Technol; 1993 Mar; 15(3):229-33. PubMed ID: 7763461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris.
    Mertens JA; Braker JD; Jordan DB
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2197-213. PubMed ID: 20549574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of enzyme-substrate and enzyme-product complexes in the catalytic mechanism of glucoamylase from Aspergillus awamori.
    Natarajan SK; Sierks MR
    Biochemistry; 1996 Dec; 35(48):15269-79. PubMed ID: 8952477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Affinity covalent immobilization of glucoamylase onto ρ-benzoquinone-activated alginate beads: II. Enzyme immobilization and characterization.
    Eldin MS; Seuror EI; Nasr MA; Tieama HA
    Appl Biochem Biotechnol; 2011 May; 164(1):45-57. PubMed ID: 21063806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Properties of immobilized glucoamylase preparations].
    Ivanova LA; El'chin SV
    Ukr Biokhim Zh (1978); 1982; 54(3):331-4. PubMed ID: 6808734
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and biochemical characterization of extracellular glucoamylase from Paenibacillus amylolyticus strain.
    Lincoln L; More VS; More SS
    J Basic Microbiol; 2019 Apr; 59(4):375-384. PubMed ID: 30681161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrolysis of aryl beta-maltotriosides by sweet potato beta-amylase and soybean beta-amylase.
    Suetsugu N; Takeo K; Sanai Y; Kuge T
    J Biochem; 1978 Feb; 83(2):473-8. PubMed ID: 147271
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Properties of urease immobilized on the functional organic silica surface].
    Liubinskiĭ GV; Ianishpol'skiĭ VV; Tertykh VA; Iuodval'kite DIu; Glemzha AA
    Ukr Biokhim Zh (1978); 1982; 54(2):145-8. PubMed ID: 6281952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic and thermodynamic properties of an immobilized glucoamylase from a mesophilic fungus, Arachniotus citrinus.
    Perveen R; Rashid MH; Saleem M; Khalid AM; Rajoka MI
    Protein Pept Lett; 2006; 13(7):665-71. PubMed ID: 17018008
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activity of enzymes immobilized in colloidal spherical polyelectrolyte brushes.
    Haupt B; Neumann T; Wittemann A; Ballauff M
    Biomacromolecules; 2005; 6(2):948-55. PubMed ID: 15762664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis.
    Salgaonkar M; Nadar SS; Rathod VK
    Int J Biol Macromol; 2018 Jul; 113():464-475. PubMed ID: 29458106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization and localization of the sporulation glucoamylase of Saccharomyces cerevisiae.
    Pugh TA; Shah JC; Magee PT; Clancy MJ
    Biochim Biophys Acta; 1989 Feb; 994(3):200-9. PubMed ID: 2493265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification and characterization of a thermostable glucoamylase from the thermophilic fungus Thermomyces lanuginosus.
    Basaveswara Rao V; Sastri NV; Subba Rao PV
    Biochem J; 1981 Feb; 193(2):379-87. PubMed ID: 6796044
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic processes for the purification of trehalose.
    Wu TT; Lin SC; Shaw JF
    Biotechnol Prog; 2013; 29(1):83-90. PubMed ID: 23172769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of the surface hydrolysis of raw starch by glucoamylase.
    Tatsumi H; Katano H
    J Agric Food Chem; 2005 Oct; 53(21):8123-7. PubMed ID: 16218653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Some details of the reaction mechanism of glucoamylase from Aspergillus niger--kinetic and structural studies on Trp52-->Phe and Trp317-->Phe mutants.
    Christensen T; Stoffer BB; Svensson B; Christensen U
    Eur J Biochem; 1997 Dec; 250(3):638-45. PubMed ID: 9461285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.