These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 11963906)

  • 1. The effect of additional autopolyploidization in a slow growing cellulase hyperproducer of Trichoderma.
    Toyama H; Toyama N
    Appl Biochem Biotechnol; 2001; 91-93():787-90. PubMed ID: 11963906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of cellulase hyperproducing strains derived from polyploids of Trichoderma reesei.
    Toyama H; Toyama N
    Microbios; 1999; 100(395):7-18. PubMed ID: 10582376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Successive construction of cellulase hyperproducers of Trichoderma using hyperpolyploids.
    Toyama H; Toyama N
    Appl Biochem Biotechnol; 2000; 84-86():419-29. PubMed ID: 10849808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active nuclear shuffling system using a swollen conidium of Trichoderma reesei.
    Toyama H; Yano M; Gisushi A; Hotta T; Toyama N
    Appl Biochem Biotechnol; 2003; 105 -108():821-4. PubMed ID: 12721419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulase formation by species of Trichoderma sect. Longibrachiatum and of Hypocrea spp. with anamorphs referable to Trichoderma sect. Longibrachiatum.
    Kubicek CP; Bölzlbauer UM; Kovacs W; Mach RL; Kuhls K; Lieckfeldt E; Börner T; Samuels GJ
    Fungal Genet Biol; 1996 Jun; 20(2):105-14. PubMed ID: 8810515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Isolation of a cellulase hyperproducer Trichoderma pseudokoningii mutant].
    Zaldívar M; Steiner J; Musalem M; Contreras I
    Microbiologia; 1987 Feb; 3(1):33-44. PubMed ID: 3269796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulase hyperproducing mutants derived from the fungus Trichoderma reesei QM9414 produced large amounts of cellulase at the enzymatic and transcriptional levels.
    Fujii T; Murakami K; Sawayama S
    Biosci Biotechnol Biochem; 2010; 74(2):419-22. PubMed ID: 20139594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic model for batch cellulase production by Trichoderma reesei RUT c30.
    Velkovska S; Marten MR; Ollis DF
    J Biotechnol; 1997 Apr; 54(2):83-94. PubMed ID: 9195752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of major facilitator transporters involved in cellulase production during lactose culture of Trichoderma reesei PC-3-7.
    Porciuncula Jde O; Furukawa T; Shida Y; Mori K; Kuhara S; Morikawa Y; Ogasawara W
    Biosci Biotechnol Biochem; 2013; 77(5):1014-22. PubMed ID: 23649266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Derepression of cellulase synthesis in Trichoderma lignorum during limitation of consumption of readily available carbon sources].
    Lobanok AG; Pavlovskaia Zhi
    Mikrobiologiia; 1975; 44(1):33-6. PubMed ID: 1172175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polykaryon formation using a swollen conidium of Trichoderma reesei.
    Toyama H; Yano M; Hotta T
    Appl Biochem Biotechnol; 2004; 113-116():325-34. PubMed ID: 15054260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulase production on high levels of cellulose and corn steep liquor.
    Farid MA; el-Shahed KY
    Zentralbl Mikrobiol; 1993 Jun; 148(4):277-83. PubMed ID: 8368026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy.
    Bailey MJ; Tähtiharju J
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):156-62. PubMed ID: 12679849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth kinetics and cellulase biosynthesis in the continuous culture of Trichoderma viride.
    Brown DE; Zainudeen MA
    Biotechnol Bioeng; 1977 Jul; 19(7):941-58. PubMed ID: 18233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed cultivation of Trichoderma reesei and Aspergillus ochraceus for improved cellulase production.
    Chadha BS; Garcha HS
    Acta Microbiol Hung; 1992; 39(1):61-7. PubMed ID: 1632200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production.
    Li C; Lin F; Li Y; Wei W; Wang H; Qin L; Zhou Z; Li B; Wu F; Chen Z
    Microb Cell Fact; 2016 Sep; 15(1):151. PubMed ID: 27585813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30.
    Callow NV; Ray CS; Kelbly MA; Ju LK
    Enzyme Microb Technol; 2016 Jan; 82():8-14. PubMed ID: 26672443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei.
    He R; Ma L; Li C; Jia W; Li D; Zhang D; Chen S
    Enzyme Microb Technol; 2014 Dec; 67():17-26. PubMed ID: 25442944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of cellulase enzyme by Trichoderma reesei Cefl9 and its application in the production of bio-ethanol.
    Kumar MR; Kumaran MD; Balashanmugam P
    Pak J Biol Sci; 2014 May; 17(5):735-9. PubMed ID: 26031010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bgl1 gene encoding extracellular beta-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex.
    Fowler T; Brown RD
    Mol Microbiol; 1992 Nov; 6(21):3225-35. PubMed ID: 1453960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.