These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 11964071)

  • 1. Persistent tubular conduction in vacuolated amphibian skeletal muscle following osmotic shock.
    Devlin CM; Chawl S; Skepper JN; Huan CL
    J Muscle Res Cell Motil; 2001; 22(5):459-66. PubMed ID: 11964071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of detubulation and vacuolation phenomena in amphibian skeletal muscle.
    Cooper SJ; Chawla S; Fraser JA; Skepper JN; Huang CL
    J Muscle Res Cell Motil; 2002; 23(4):327-33. PubMed ID: 12630707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tubular vacuolation process in amphibian skeletal muscle.
    Fraser JA; Skepper JN; Hockaday AR; Huang CL
    J Muscle Res Cell Motil; 1998 Aug; 19(6):613-29. PubMed ID: 9742446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loop diuretics inhibit detubulation and vacuolation in amphibian muscle fibres exposed to osmotic shock.
    Khan KN; Skepper JN; Hockaday AR; Burgess AJ; Huang CL
    J Muscle Res Cell Motil; 2000 Jan; 21(1):79-90. PubMed ID: 10813637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The afterdepolarization in Rana temporaria muscle fibres following osmotic shock.
    Koutsis G; Philippides A; Huang CL
    J Muscle Res Cell Motil; 1995 Oct; 16(5):519-28. PubMed ID: 8567939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac glycosides inhibit detubulation in amphibian skeletal muscle fibres exposed to osmotic shock.
    Nik-Zainal S; Skepper JN; Hockaday A; Huang CL
    J Muscle Res Cell Motil; 1999 Jan; 20(1):45-53. PubMed ID: 10360233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detubulation experiments localise delayed rectifier currents to the surface membrane of amphibian skeletal muscle fibres.
    Yee Chin J; Matthews HR; Fraser JA; Skepper JN; Chawla S; Huang CL
    J Muscle Res Cell Motil; 2004; 25(4-5):389-95. PubMed ID: 15548868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Normal conduction of surface action potentials in detubulated amphibian skeletal muscle fibres.
    Sheikh SM; Skepper JN; Chawla S; Vandenberg JI; Elneil S; Huang CL
    J Physiol; 2001 Sep; 535(Pt 2):579-90. PubMed ID: 11533146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmotic 'detubulation' in frog muscle arises from a reversible vacuolation process.
    Gallagher FA; Huang CL
    J Muscle Res Cell Motil; 1997 Jun; 18(3):305-21. PubMed ID: 9172073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detubulation abolishes membrane potential stabilization in amphibian skeletal muscle.
    Chin DX; Fraser JA; Usher-Smith JA; Skepper JN; Huang CL
    J Muscle Res Cell Motil; 2004; 25(4-5):379-87. PubMed ID: 15548867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible vacuolation of the transverse tubules of frog skeletal muscle: a confocal fluorescence microscopy study.
    Krolenko SA; Amos WB; Lucy JA
    J Muscle Res Cell Motil; 1995 Aug; 16(4):401-11. PubMed ID: 7499480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuole formation in fatigued skeletal muscle fibres from frog and mouse: effects of extracellular lactate.
    Lännergren J; Bruton JD; Westerblad H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):597-611. PubMed ID: 10922011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible vacuolation of T-tubules in skeletal muscle: mechanisms and implications for cell biology.
    Krolenko SA; Lucy JA
    Int Rev Cytol; 2001; 202():243-98. PubMed ID: 11061566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conduction velocities in amphibian skeletal muscle fibres exposed to hyperosmotic extracellular solutions.
    Chen Z; Hothi SS; Xu W; Huang CL
    J Muscle Res Cell Motil; 2007; 28(4-5):195-202. PubMed ID: 17891463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in triad ultrastructure following repetitive stimulation and intracellular changes associated with exercise in amphibian skeletal muscle.
    Usher-Smith JA; Fraser JA; Huang CL; Skepper JN
    J Muscle Res Cell Motil; 2007; 28(1):19-28. PubMed ID: 17333488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accessibility of T-tubule vacuoles to extracellular dextran and DNA: mechanism and potential application of vacuolation.
    Krolenko SA; Amos WB; Brown SC; Tarunina MV; Lucy JA
    J Muscle Res Cell Motil; 1998 Aug; 19(6):603-11. PubMed ID: 9742445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat.
    Posterino GS; Lamb GD; Stephenson DG
    J Physiol; 2000 Aug; 527 Pt 1(Pt 1):131-7. PubMed ID: 10944176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Functional role of vacuolization of the T-system of skeletal muscle fibers].
    Krolenko SA; Adamian SIa; Lucy JA
    Tsitologiia; 1997; 39(10):878-88. PubMed ID: 9505335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of extracellular tonicity on the anatomy of triad complexes in amphibian skeletal muscle.
    Martin CA; Petousi N; Chawla S; Hockaday AR; Burgess AJ; Fraser JA; Huang CL; Skepper JN
    J Muscle Res Cell Motil; 2003; 24(7):407-15. PubMed ID: 14677643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacuole formation in fatigued single muscle fibres from frog and mouse.
    Lännergren J; Bruton JD; Westerblad H
    J Muscle Res Cell Motil; 1999 Jan; 20(1):19-32. PubMed ID: 10360231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.