These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 11964169)
1. Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-beta-lactamase. de Seny D; Prosperi-Meys C; Bebrone C; Rossolini GM; Page MI; Noel P; Frère JM; Galleni M Biochem J; 2002 May; 363(Pt 3):687-96. PubMed ID: 11964169 [TBL] [Abstract][Full Text] [Related]
2. Metal ion binding and coordination geometry for wild type and mutants of metallo-beta -lactamase from Bacillus cereus 569/H/9 (BcII): a combined thermodynamic, kinetic, and spectroscopic approach. de Seny D; Heinz U; Wommer S; Kiefer M; Meyer-Klaucke W; Galleni M; Frere JM; Bauer R; Adolph HW J Biol Chem; 2001 Nov; 276(48):45065-78. PubMed ID: 11551939 [TBL] [Abstract][Full Text] [Related]
3. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions. Badarau A; Page MI Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217 [TBL] [Abstract][Full Text] [Related]
4. Metal content and localization during turnover in B. cereus metallo-beta-lactamase. Llarrull LI; Tioni MF; Vila AJ J Am Chem Soc; 2008 Nov; 130(47):15842-51. PubMed ID: 18980306 [TBL] [Abstract][Full Text] [Related]
5. Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis. Jacquin O; Balbeur D; Damblon C; Marchot P; De Pauw E; Roberts GC; Frère JM; Matagne A J Mol Biol; 2009 Oct; 392(5):1278-91. PubMed ID: 19665032 [TBL] [Abstract][Full Text] [Related]
6. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism. Davies AM; Rasia RM; Vila AJ; Sutton BJ; Fabiane SM Biochemistry; 2005 Mar; 44(12):4841-9. PubMed ID: 15779910 [TBL] [Abstract][Full Text] [Related]
7. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold. González JM; Medrano Martín FJ; Costello AL; Tierney DL; Vila AJ J Mol Biol; 2007 Nov; 373(5):1141-56. PubMed ID: 17915249 [TBL] [Abstract][Full Text] [Related]
8. Exploring the role and the binding affinity of a second zinc equivalent in B. cereus metallo-beta-lactamase. Rasia RM; Vila AJ Biochemistry; 2002 Feb; 41(6):1853-60. PubMed ID: 11827530 [TBL] [Abstract][Full Text] [Related]
9. Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase. Chantalat L; Duée E; Galleni M; Frère JM; Dideberg O Protein Sci; 2000 Jul; 9(7):1402-6. PubMed ID: 10933508 [TBL] [Abstract][Full Text] [Related]
10. Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism. Paul-Soto R; Bauer R; Frère JM; Galleni M; Meyer-Klaucke W; Nolting H; Rossolini GM; de Seny D; Hernandez-Valladares M; Zeppezauer M; Adolph HW J Biol Chem; 1999 May; 274(19):13242-9. PubMed ID: 10224083 [TBL] [Abstract][Full Text] [Related]
11. The activity of the dinuclear cobalt-beta-lactamase from Bacillus cereus in catalysing the hydrolysis of beta-lactams. Badarau A; Damblon C; Page MI Biochem J; 2007 Jan; 401(1):197-203. PubMed ID: 16961465 [TBL] [Abstract][Full Text] [Related]
12. Enzyme deactivation due to metal-ion dissociation during turnover of the cobalt-beta-lactamase catalyzed hydrolysis of beta-lactams. Badarau A; Page MI Biochemistry; 2006 Sep; 45(36):11012-20. PubMed ID: 16953588 [TBL] [Abstract][Full Text] [Related]
13. Grafting a new metal ligand in the cocatalytic site of B. cereus metallo-beta-lactamase: structural flexibility without loss of activity. Rasia RM; Ceolín M; Vila AJ Protein Sci; 2003 Jul; 12(7):1538-46. PubMed ID: 12824499 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme. Fabiane SM; Sohi MK; Wan T; Payne DJ; Bateson JH; Mitchell T; Sutton BJ Biochemistry; 1998 Sep; 37(36):12404-11. PubMed ID: 9730812 [TBL] [Abstract][Full Text] [Related]
15. Engineered mononuclear variants in Bacillus cereus metallo-beta-lactamase BcII are inactive. Abriata LA; González LJ; Llarrull LI; Tomatis PE; Myers WK; Costello AL; Tierney DL; Vila AJ Biochemistry; 2008 Aug; 47(33):8590-9. PubMed ID: 18652482 [TBL] [Abstract][Full Text] [Related]
17. Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-beta-lactamases . González JM; Buschiazzo A; Vila AJ Biochemistry; 2010 Sep; 49(36):7930-8. PubMed ID: 20677753 [TBL] [Abstract][Full Text] [Related]
18. Evidence for a dinuclear active site in the metallo-beta-lactamase BcII with substoichiometric Co(II). A new model for metal uptake. Llarrull LI; Tioni MF; Kowalski J; Bennett B; Vila AJ J Biol Chem; 2007 Oct; 282(42):30586-95. PubMed ID: 17715135 [TBL] [Abstract][Full Text] [Related]
19. Antibiotic resistance: mono- and dinuclear zinc complexes as metallo-beta-lactamase mimics. Tamilselvi A; Nethaji M; Mugesh G Chemistry; 2006 Oct; 12(30):7797-806. PubMed ID: 16906495 [TBL] [Abstract][Full Text] [Related]
20. Familial mutations and zinc stoichiometry determine the rate-limiting step of nitrocefin hydrolysis by metallo-beta-lactamase from Bacteroides fragilis. Fast W; Wang Z; Benkovic SJ Biochemistry; 2001 Feb; 40(6):1640-50. PubMed ID: 11327823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]