These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 11964198)

  • 1. Combined and interacting effects of hand and head movement delays on discrete manual performance in a virtual environment.
    So RH; Chung GK
    Ergonomics; 2002 Feb; 45(2):105-23. PubMed ID: 11964198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gain effects on performance using a head-controlled computer input device.
    Lin ML; Radwin RG; Vanderheiden GC
    Ergonomics; 1992 Feb; 35(2):159-75. PubMed ID: 1628609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target-directed head movements in a head-coupled virtual environment: predicting the effects of lags using Fitts' law.
    So RH; Chung GK; Goonetilleke RS
    Hum Factors; 1999 Sep; 41(3):474-86. PubMed ID: 10665214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-distance robotic telesurgery: a feasibility study for care in remote environments.
    Rayman R; Croome K; Galbraith N; McClure R; Morady R; Peterson S; Smith S; Subotic V; Van Wynsberghe A; Primak S
    Int J Med Robot; 2006 Sep; 2(3):216-24. PubMed ID: 17520635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manual control in space--research on perceptual-motor functions under zero gravity condition.
    Tada A; Suematsu S; Okabe M
    Biol Sci Space; 2001 Oct; 15 Suppl():S84-90. PubMed ID: 12101353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using EMG to anticipate head motion for virtual-environment applications.
    Barniv Y; Aguilar M; Hasanbelliu E
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1078-93. PubMed ID: 15977737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hand-head coordination changes from discrete to reciprocal hand movements for various difficulty settings.
    Germain-Robitaille M; Terrier R; Forestier N; Teasdale N
    Neurosci Lett; 2012 Jul; 521(1):1-5. PubMed ID: 22626614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects on visual functions during tasks of object handling in virtual environment with a head mounted display.
    Kawara T; Ohmi M; Yoshizawa T
    Ergonomics; 1996 Nov; 39(11):1370-80. PubMed ID: 8888647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Countermanding eye-head gaze shifts in humans: marching orders are delivered to the head first.
    Corneil BD; Elsley JK
    J Neurophysiol; 2005 Jul; 94(1):883-95. PubMed ID: 15728762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of individual hand performance in box trainers compared to virtual reality trainers.
    Madan AK; Frantzides CT; Shervin N; Tebbit CL
    Am Surg; 2003 Dec; 69(12):1112-4. PubMed ID: 14700302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of online visual feedback for the control of target-directed and allocentric hand movements.
    Thaler L; Goodale MA
    J Neurophysiol; 2011 Feb; 105(2):846-59. PubMed ID: 21160005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrotactile display coding for a balance prosthesis.
    Kadkade PP; Benda BJ; Schmidt PB; Wall C
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):392-9. PubMed ID: 14960115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neglect assessment as an application of virtual reality.
    Broeren J; Samuelsson H; Stibrant-Sunnerhagen K; Blomstrand C; Rydmark M
    Acta Neurol Scand; 2007 Sep; 116(3):157-63. PubMed ID: 17714328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hand position effects on precision and speed in telerobotic surgery.
    Golenberg L; Cao A; Ellis RD; Klein M; Auner G; Pandya AK
    Int J Med Robot; 2007 Sep; 3(3):217-23. PubMed ID: 17823978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements.
    Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA
    J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain activity in goal-directed movements in a real compared to a virtual environment using the Nintendo Wii.
    Baumeister J; Reinecke K; Cordes M; Lerch C; Weiss M
    Neurosci Lett; 2010 Aug; 481(1):47-50. PubMed ID: 20600604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Task performance is prioritized over energy reduction.
    Balasubramanian R; Howe RD; Matsuoka Y
    IEEE Trans Biomed Eng; 2009 May; 56(5):1310-7. PubMed ID: 19272896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eye-movement study and human performance using telepathology virtual slides: implications for medical education and differences with experience.
    Krupinski EA; Tillack AA; Richter L; Henderson JT; Bhattacharyya AK; Scott KM; Graham AR; Descour MR; Davis JR; Weinstein RS
    Hum Pathol; 2006 Dec; 37(12):1543-56. PubMed ID: 17129792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of mechanical impedance in human arm movements using a virtual tennis system.
    Tsuji T; Takeda Y; Tanaka Y
    Biol Cybern; 2004 Nov; 91(5):295-305. PubMed ID: 15480744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.