These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 11964248)
1. Light-induced hydrolysis and rebinding of nonisomerizable bacteriorhodopsin pigment. Aharoni A; Ottolenghi M; Sheves M Biophys J; 2002 May; 82(5):2617-26. PubMed ID: 11964248 [TBL] [Abstract][Full Text] [Related]
2. Photoreduction of bacteriorhodopsin Schiff base at low humidity. A study with C13=C14 nonisomerizable artificial pigments. Aharoni A; Ottolenghi M; Sheves M Photochem Photobiol; 2002 Jun; 75(6):668-74. PubMed ID: 12081330 [TBL] [Abstract][Full Text] [Related]
3. Primary picosecond molecular events in the photoreaction of the BR5.12 artificial bacteriorhodopsin pigment. Delaney JK; Brack TL; Atkinson GH; Ottolenghi M; Steinberg G; Sheves M Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2101-5. PubMed ID: 7892231 [TBL] [Abstract][Full Text] [Related]
4. Bacteriorhodpsin experiences light-induced conformational alterations in nonisomerizable C(13)=C(14) pigments. A study with EPR. Aharoni A; Weiner L; Ottolenghi M; Sheves M J Biol Chem; 2000 Jul; 275(28):21010-6. PubMed ID: 10801804 [TBL] [Abstract][Full Text] [Related]
5. Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments. Rousso I; Gat Y; Lewis A; Sheves M; Ottolenghi M Biophys J; 1998 Jul; 75(1):413-7. PubMed ID: 9649399 [TBL] [Abstract][Full Text] [Related]
6. Retinal isomerization in bacteriorhodopsin is controlled by specific chromophore-protein interactions. A study with noncovalent artificial pigments. Aharoni A; Ottolenghi M; Sheves M Biochemistry; 2001 Nov; 40(44):13310-9. PubMed ID: 11683641 [TBL] [Abstract][Full Text] [Related]
7. A bacteriorhodopsin analog reconstituted with a nonisomerizable 13-trans retinal derivative displays light insensitivity. Bhattacharya S; Marti T; Otto H; Heyn MP; Khorana HG J Biol Chem; 1992 Apr; 267(10):6757-62. PubMed ID: 1551884 [TBL] [Abstract][Full Text] [Related]
8. Heterogeneity effects in the binding of all-trans retinal to bacterio-opsin. Friedman N; Ottolenghi M; Sheves M Biochemistry; 2003 Sep; 42(38):11281-8. PubMed ID: 14503878 [TBL] [Abstract][Full Text] [Related]
9. The Schiff base bond configuration in bacteriorhodopsin and in model compounds. Livnah N; Sheves M Biochemistry; 1993 Jul; 32(28):7223-8. PubMed ID: 8343511 [TBL] [Abstract][Full Text] [Related]
10. Photochemical conversion of the O-intermediate to 9-cis-retinal-containing products in bacteriorhodopsin films. Popp A; Wolperdinger M; Hampp N; Brüchle C; Oesterhelt D Biophys J; 1993 Oct; 65(4):1449-59. PubMed ID: 8274639 [TBL] [Abstract][Full Text] [Related]
11. Lowering the intrinsic pKa of the chromophore's Schiff base can restore its light-induced deprotonation in the inactive Tyr-57-->Asn mutant of bacteriorhodopsin. Govindjee R; Balashov S; Ebrey T; Oesterhelt D; Steinberg G; Sheves M J Biol Chem; 1994 May; 269(20):14353-4. PubMed ID: 8182036 [TBL] [Abstract][Full Text] [Related]
12. Non-isomerizable artificial pigments: implications for the primary light-induced events in bacteriorhodopsin. Aharoni A; Hou B; Friedman N; Ottolenghi M; Rousso I; Ruhman S; Sheves M; Ye T; Zhong Q Biochemistry (Mosc); 2001 Nov; 66(11):1210-9. PubMed ID: 11743866 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of the 13-cis isomer of bacteriorhodopsin in the dark-adapted state. Nishikawa T; Murakami M; Kouyama T J Mol Biol; 2005 Sep; 352(2):319-28. PubMed ID: 16084526 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics study of the nature and origin of retinal's twisted structure in bacteriorhodopsin. Tajkhorshid E; Baudry J; Schulten K; Suhai S Biophys J; 2000 Feb; 78(2):683-93. PubMed ID: 10653781 [TBL] [Abstract][Full Text] [Related]
15. pKa of the protonated Schiff base and aspartic 85 in the bacteriorhodopsin binding site is controlled by a specific geometry between the two residues. Rousso I; Friedman N; Sheves M; Ottolenghi M Biochemistry; 1995 Sep; 34(37):12059-65. PubMed ID: 7547944 [TBL] [Abstract][Full Text] [Related]
16. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer. Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698 [TBL] [Abstract][Full Text] [Related]
17. Protein-chromophore interactions in bacteriorhodopsin: the effects of a change in surface potential. Swords NA; Wallace BA Biochim Biophys Acta; 1991 Dec; 1070(2):313-20. PubMed ID: 1764449 [TBL] [Abstract][Full Text] [Related]
18. Methoxyretinals in bacteriorhodopsin. Absorption maxima, cis-trans isomerization and retinal protein interaction. Gärtner W; Oesterhelt D Eur J Biochem; 1988 Oct; 176(3):641-8. PubMed ID: 2844533 [TBL] [Abstract][Full Text] [Related]
19. Formation of 9-cis- and 11-cis-retinal pigments from bacteriorhodopsin by irradiating purple membrane in acid. Maeda A; Iwasa T; Yoshizawa T Biochemistry; 1980 Aug; 19(16):3825-31. PubMed ID: 7407071 [TBL] [Abstract][Full Text] [Related]
20. Phototransformation and proton pumping activity of the 14-fluoro bacteriorhodopsin derivatives. Druzhko AB; Robertson B; Alvarez R; de Lera AR; Weetall HH Biochim Biophys Acta; 1998 May; 1371(2):371-81. PubMed ID: 9630725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]