BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 11964266)

  • 1. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein.
    Huang S; Heikal AA; Webb WW
    Biophys J; 2002 May; 82(5):2811-25. PubMed ID: 11964266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin.
    Masters BR; So PT; Gratton E
    Biophys J; 1997 Jun; 72(6):2405-12. PubMed ID: 9168018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors.
    Duchen MR; Biscoe TJ
    J Physiol; 1992 May; 450():13-31. PubMed ID: 1432706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength.
    Cao R; Wallrabe H; Periasamy A
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31920048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of fluorescence changes of NAD(P)H and of fluorescent flavoproteins in saponin-skinned human skeletal muscle fibers.
    Kunz WS; Kuznetsov AV; Winkler K; Gellerich FN; Neuhof S; Neumann HW
    Anal Biochem; 1994 Feb; 216(2):322-7. PubMed ID: 8179187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative imaging of metabolism by two-photon excitation microscopy.
    Piston DW; Knobel SM
    Methods Enzymol; 1999; 307():351-68. PubMed ID: 10506984
    [No Abstract]   [Full Text] [Related]  

  • 8. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive measurements of pyridine nucleotide fluorescence from the cornea.
    Laing RA; Fischbarg J; Chance B
    Invest Ophthalmol Vis Sci; 1980 Jan; 19(1):96-102. PubMed ID: 7350140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A LED-based method for monitoring NAD(P)H and FAD fluorescence in cell cultures and brain slices.
    Rösner J; Liotta A; Schmitz D; Heinemann U; Kovács R
    J Neurosci Methods; 2013 Jan; 212(2):222-7. PubMed ID: 23142181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response.
    Rocheleau JV; Head WS; Piston DW
    J Biol Chem; 2004 Jul; 279(30):31780-7. PubMed ID: 15148320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two-photon excitation laser scanning microscopy.
    Piston DW; Masters BR; Webb WW
    J Microsc; 1995 Apr; 178(Pt 1):20-7. PubMed ID: 7745599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fluorescence spectral characteristics of human blood and its endogenous fluorophores].
    Li BH; Zhang ZX; Xie SS; Chen R
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jul; 26(7):1310-3. PubMed ID: 17020047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms.
    Neu TR; Kuhlicke U; Lawrence JR
    Appl Environ Microbiol; 2002 Feb; 68(2):901-9. PubMed ID: 11823234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autofluorescence Imaging to Evaluate Cellular Metabolism.
    Theodossiou A; Hu L; Wang N; Nguyen U; Walsh AJ
    J Vis Exp; 2021 Nov; (177):. PubMed ID: 34842243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of mitochondrial dysfunction due to laser damage by 2-photon FLIM microscopy.
    Alam SR; Wallrabe H; Christopher KG; Siller KH; Periasamy A
    Sci Rep; 2022 Jul; 12(1):11938. PubMed ID: 35831321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of NAD(P)H and flavoprotein fluorescence signals to characterize the redox state of pyridine nucleotides in epididymal bull spermatozoa.
    Halangk W; Kunz WS
    Biochim Biophys Acta; 1991 Feb; 1056(3):273-8. PubMed ID: 2001381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectrally resolved time-correlated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes.
    Chorvat D; Chorvatova A
    Eur Biophys J; 2006 Dec; 36(1):73-83. PubMed ID: 17033778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative auto-fluorescence quenching of free and bound NADH in HeLa cell line model with Carbonyl cyanide-p-Trifluoromethoxy phenylhydrazone (FCCP) as quenching agent.
    Rehman AU; Qureshi SA
    Photodiagnosis Photodyn Ther; 2022 Sep; 39():102954. PubMed ID: 35690321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.