These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11964372)

  • 1. Influence of mitochondrial inhibition on global and local [Ca(2+)](I) in rat tail artery.
    Swärd K; Dreja K; Lindqvist A; Persson E; Hellstrand P
    Circ Res; 2002 Apr; 90(7):792-9. PubMed ID: 11964372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries.
    Cheranov SY; Jaggar JH
    J Physiol; 2004 May; 556(Pt 3):755-71. PubMed ID: 14766935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. alpha1-Adrenoceptor-mediated phosphorylation of myosin in rat-tail arterial smooth muscle.
    Mita M; Walsh MP
    Biochem J; 1997 Nov; 327 ( Pt 3)(Pt 3):669-74. PubMed ID: 9581541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergent roles of glycolysis and the mitochondrial electron transport chain in hypoxic pulmonary vasoconstriction of the rat: identity of the hypoxic sensor.
    Leach RM; Hill HM; Snetkov VA; Robertson TP; Ward JP
    J Physiol; 2001 Oct; 536(Pt 1):211-24. PubMed ID: 11579170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H(2)O(2) mediates Ca(2+)- and MLC(20) phosphorylation-independent contraction in intact and permeabilized vascular muscle.
    Pelaez NJ; Braun TR; Paul RJ; Meiss RA; Packer CS
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1185-93. PubMed ID: 10993783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium wave propagation in pancreatic acinar cells: functional interaction of inositol 1,4,5-trisphosphate receptors, ryanodine receptors, and mitochondria.
    Straub SV; Giovannucci DR; Yule DI
    J Gen Physiol; 2000 Oct; 116(4):547-60. PubMed ID: 11004204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-dependent rapid Ca2+ sensitization of contraction in arterial smooth muscle.
    Dimopoulos GJ; Semba S; Kitazawa K; Eto M; Kitazawa T
    Circ Res; 2007 Jan; 100(1):121-9. PubMed ID: 17158339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of oxygen tension on energetics of cultured vascular smooth muscle.
    Lindqvist A; Dreja K; Swärd K; Hellstrand P
    Am J Physiol Heart Circ Physiol; 2002 Jul; 283(1):H110-7. PubMed ID: 12063281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intravascular pressure augments cerebral arterial constriction by inducing voltage-insensitive Ca2+ waves.
    Mufti RE; Brett SE; Tran CH; Abd El-Rahman R; Anfinogenova Y; El-Yazbi A; Cole WC; Jones PP; Chen SR; Welsh DG
    J Physiol; 2010 Oct; 588(Pt 20):3983-4005. PubMed ID: 20736418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications of αvβ3 Integrin Signaling in the Regulation of Ca2+ Waves and Myogenic Tone in Cerebral Arteries.
    Mufti RE; Zechariah A; Sancho M; Mazumdar N; Brett SE; Welsh DG
    Arterioscler Thromb Vasc Biol; 2015 Dec; 35(12):2571-8. PubMed ID: 26494230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mitochondrial inhibitors and uncouplers on hypoxic vasoconstriction in rabbit lungs.
    Weissmann N; Ebert N; Ahrens M; Ghofrani HA; Schermuly RT; Hänze J; Fink L; Rose F; Conzen J; Seeger W; Grimminger F
    Am J Respir Cell Mol Biol; 2003 Dec; 29(6):721-32. PubMed ID: 12791676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing.
    Waypa GB; Chandel NS; Schumacker PT
    Circ Res; 2001 Jun; 88(12):1259-66. PubMed ID: 11420302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased Energy Demand during Adrenergic Receptor Stimulation Contributes to Ca(2+) Wave Generation.
    Bovo E; Mazurek SR; de Tombe PP; Zima AV
    Biophys J; 2015 Oct; 109(8):1583-91. PubMed ID: 26488649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graded alpha1-adrenoceptor activation of arteries involves recruitment of smooth muscle cells to produce 'all or none' Ca(2+) signals.
    Zang WJ; Balke CW; Wier WG
    Cell Calcium; 2001 May; 29(5):327-34. PubMed ID: 11292389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct pathways of Ca(2+) sensitization in porcine coronary artery: effects of Rho-related kinase and protein kinase C inhibition on force and intracellular Ca(2+).
    Nobe K; Paul RJ
    Circ Res; 2001 Jun; 88(12):1283-90. PubMed ID: 11420305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of mitochondria in spontaneous rhythmic activity and intracellular calcium waves in the guinea pig gallbladder smooth muscle.
    Balemba OB; Bartoo AC; Nelson MT; Mawe GM
    Am J Physiol Gastrointest Liver Physiol; 2008 Feb; 294(2):G467-76. PubMed ID: 18048480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement of glycolytic and mitochondrial energy supply for loading of Ca(2+) stores and InsP(3)-mediated Ca(2+) signaling in rat hippocampus astrocytes.
    Kahlert S; Reiser G
    J Neurosci Res; 2000 Aug; 61(4):409-20. PubMed ID: 10931527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local and cellular Ca2+ transients in smooth muscle of pressurized rat resistance arteries during myogenic and agonist stimulation.
    Miriel VA; Mauban JR; Blaustein MP; Wier WG
    J Physiol; 1999 Aug; 518 ( Pt 3)(Pt 3):815-24. PubMed ID: 10420017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Late onset vascular dysfunction in the R6/1 model of Huntington's disease.
    Rahman A; Ekman M; Shakirova Y; Andersson KE; Mörgelin M; Erjefält JS; Brundin P; Li JY; Swärd K
    Eur J Pharmacol; 2013 Jan; 698(1-3):345-53. PubMed ID: 23117088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Ca2+ flux is a critical determinant of the Ca2+ dependence of mast cell degranulation.
    Suzuki Y; Yoshimaru T; Inoue T; Ra C
    J Leukoc Biol; 2006 Mar; 79(3):508-18. PubMed ID: 16365155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.