These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 11965556)
1. The stabilizing axial spinal pillar in the lumbar spine. Iencean SM Spinal Cord; 2002 Apr; 40(4):178-85. PubMed ID: 11965556 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Chung SK; Kim YE; Wang KC Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003 [TBL] [Abstract][Full Text] [Related]
3. Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. Renner SM; Natarajan RN; Patwardhan AG; Havey RM; Voronov LI; Guo BY; Andersson GB; An HS J Biomech; 2007; 40(6):1326-32. PubMed ID: 16843473 [TBL] [Abstract][Full Text] [Related]
4. The influence of slouching and lumbar support on iliolumbar ligaments, intervertebral discs and sacroiliac joints. Snijders CJ; Hermans PF; Niesing R; Spoor CW; Stoeckart R Clin Biomech (Bristol); 2004 May; 19(4):323-9. PubMed ID: 15109750 [TBL] [Abstract][Full Text] [Related]
5. The contribution of trabecular bone to the stiffness and strength of rat lumbar vertebrae. Barak MM; Weiner S; Shahar R Spine (Phila Pa 1976); 2010 Oct; 35(22):E1153-9. PubMed ID: 20881656 [TBL] [Abstract][Full Text] [Related]
6. Enhancing the stability of anterior lumbar interbody fusion: a biomechanical comparison of anterior plate versus posterior transpedicular instrumentation. Tzermiadianos MN; Mekhail A; Voronov LI; Zook J; Havey RM; Renner SM; Carandang G; Abjornson C; Patwardhan AG Spine (Phila Pa 1976); 2008 Jan; 33(2):E38-43. PubMed ID: 18197089 [TBL] [Abstract][Full Text] [Related]
7. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs. Kemper AR; McNally C; Duma SM Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077 [TBL] [Abstract][Full Text] [Related]
8. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. Shirazi-Adl A J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628 [TBL] [Abstract][Full Text] [Related]
9. The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis. Schmidt H; Heuer F; Claes L; Wilke HJ Clin Biomech (Bristol); 2008 Mar; 23(3):270-8. PubMed ID: 17997207 [TBL] [Abstract][Full Text] [Related]
10. Computational model of the lumbar spine musculature: implications of spinal surgery. Gatton ML; Pearcy MJ; Pettet GJ Clin Biomech (Bristol); 2011 Feb; 26(2):116-22. PubMed ID: 20956031 [TBL] [Abstract][Full Text] [Related]
11. Structural behavior of human lumbar spinal motion segments. Gardner-Morse MG; Stokes IA J Biomech; 2004 Feb; 37(2):205-12. PubMed ID: 14706323 [TBL] [Abstract][Full Text] [Related]
12. On the implications of interpreting the stability index: a spine example. Gardner-Morse MG; Stokes IA; Huston DR J Biomech; 2006; 39(2):391-2; author reply 393-4. PubMed ID: 16256126 [No Abstract] [Full Text] [Related]
13. A generic detailed rigid-body lumbar spine model. de Zee M; Hansen L; Wong C; Rasmussen J; Simonsen EB J Biomech; 2007; 40(6):1219-27. PubMed ID: 16901492 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical response of the lumbar spine in dynamic compression. Duma SM; Kemper AR; McNeely DM; Brolinson PG; Matsuoka F Biomed Sci Instrum; 2006; 42():476-81. PubMed ID: 16817654 [TBL] [Abstract][Full Text] [Related]
15. Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar functional spinal unit. Zander T; Rohlmann A; Bergmann G Biomed Tech (Berl); 2004; 49(1-2):27-32. PubMed ID: 15032495 [TBL] [Abstract][Full Text] [Related]
16. Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations. Bouzakis KD; Mitsi S; Michailidis N; Mirisidis I; Mesomeris G; Maliaris G; Korlos A; Kapetanos G; Antonarakos P; Anagnostidis K J Musculoskelet Neuronal Interact; 2004 Jun; 4(2):152-8. PubMed ID: 15615116 [TBL] [Abstract][Full Text] [Related]
17. Effect of two-level total disc replacement on cervical spine kinematics. Phillips FM; Tzermiadianos MN; Voronov LI; Havey RM; Carandang G; Dooris A; Patwardhan AG Spine (Phila Pa 1976); 2009 Oct; 34(22):E794-9. PubMed ID: 19829242 [TBL] [Abstract][Full Text] [Related]
18. Shear strength of the human lumbar spine. Skrzypiec DM; Klein A; Bishop NE; Stahmer F; PĆ¼schel K; Seidel H; Morlock MM; Huber G Clin Biomech (Bristol); 2012 Aug; 27(7):646-51. PubMed ID: 22578739 [TBL] [Abstract][Full Text] [Related]
19. Total disc replacement positioning affects facet contact forces and vertebral body strains. Rundell SA; Auerbach JD; Balderston RA; Kurtz SM Spine (Phila Pa 1976); 2008 Nov; 33(23):2510-7. PubMed ID: 18978591 [TBL] [Abstract][Full Text] [Related]
20. The dynamic flexion/extension properties of the lumbar spine in vitro using a novel pendulum system. Crisco JJ; Fujita L; Spenciner DB J Biomech; 2007; 40(12):2767-73. PubMed ID: 17367798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]