These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11966457)

  • 1. Thiol-dependent enzymes and their inhibitors: a review.
    Leung-Toung R; Li W; Tam TF; Karimian K
    Curr Med Chem; 2002 May; 9(9):979-1002. PubMed ID: 11966457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 4. Incorporation of P1 lactam moieties as L-glutamine replacements.
    Dragovich PS; Prins TJ; Zhou R; Webber SE; Marakovits JT; Fuhrman SA; Patick AK; Matthews DA; Lee CA; Ford CE; Burke BJ; Rejto PA; Hendrickson TF; Tuntland T; Brown EL; Meador JW; Ferre RA; Harr JE; Kosa MB; Worland ST
    J Med Chem; 1999 Apr; 42(7):1213-24. PubMed ID: 10197965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Possible involvement of radical intermediates in the inhibition of cysteine proteases by allenyl esters and amides.
    Takeuchi Y; Fujiwara T; Shimone Y; Miyataka H; Satoh T; Kirk KL; Hori H
    Bioorg Med Chem Lett; 2008 Dec; 18(23):6202-5. PubMed ID: 18951789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol proteases: inhibitors and potential therapeutic targets.
    Leung-Toung R; Zhao Y; Li W; Tam TF; Karimian K; Spino M
    Curr Med Chem; 2006; 13(5):547-81. PubMed ID: 16515521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 3. Structure-activity studies of ketomethylene-containing peptidomimetics.
    Dragovich PS; Prins TJ; Zhou R; Fuhrman SA; Patick AK; Matthews DA; Ford CE; Meador JW; Ferre RA; Worland ST
    J Med Chem; 1999 Apr; 42(7):1203-12. PubMed ID: 10197964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes.
    Matthews DA; Dragovich PS; Webber SE; Fuhrman SA; Patick AK; Zalman LS; Hendrickson TF; Love RA; Prins TJ; Marakovits JT; Zhou R; Tikhe J; Ford CE; Meador JW; Ferre RA; Brown EL; Binford SL; Brothers MA; DeLisle DM; Worland ST
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11000-7. PubMed ID: 10500114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-peptidic inhibitors of cysteine proteases.
    Schirmeister T; Kaeppler U
    Mini Rev Med Chem; 2003 Jun; 3(4):361-73. PubMed ID: 12678829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 2. Peptide structure-activity studies.
    Dragovich PS; Webber SE; Babine RE; Fuhrman SA; Patick AK; Matthews DA; Reich SH; Marakovits JT; Prins TJ; Zhou R; Tikhe J; Littlefield ES; Bleckman TM; Wallace MB; Little TL; Ford CE; Meador JW; Ferre RA; Brown EL; Binford SL; DeLisle DM; Worland ST
    J Med Chem; 1998 Jul; 41(15):2819-34. PubMed ID: 9667971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of cysteine protease inactivation by peptidyl epoxides.
    Albeck A; Kliper S
    Biochem J; 1997 Mar; 322 ( Pt 3)(Pt 3):879-84. PubMed ID: 9148764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent inhibition of SUMO and ubiquitin-specific cysteine proteases by an in situ thiol-alkyne addition.
    Sommer S; Weikart ND; Linne U; Mootz HD
    Bioorg Med Chem; 2013 May; 21(9):2511-7. PubMed ID: 23535560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 1. Michael acceptor structure-activity studies.
    Dragovich PS; Webber SE; Babine RE; Fuhrman SA; Patick AK; Matthews DA; Lee CA; Reich SH; Prins TJ; Marakovits JT; Littlefield ES; Zhou R; Tikhe J; Ford CE; Wallace MB; Meador JW; Ferre RA; Brown EL; Binford SL; Harr JE; DeLisle DM; Worland ST
    J Med Chem; 1998 Jul; 41(15):2806-18. PubMed ID: 9667970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New peptidic cysteine protease inhibitors derived from the electrophilic alpha-amino acid aziridine-2,3-dicarboxylic acid.
    Schirmeister T
    J Med Chem; 1999 Feb; 42(4):560-72. PubMed ID: 10052963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based design of ketone-containing, tripeptidyl human rhinovirus 3C protease inhibitors.
    Dragovich PS; Zhou R; Webber SE; Prins TJ; Kwok AK; Okano K; Fuhrman SA; Zalman LS; Maldonado FC; Brown EL; Meador JW; Patick AK; Ford CE; Brothers MA; Binford SL; Matthews DA; Ferre RA; Worland ST
    Bioorg Med Chem Lett; 2000 Jan; 10(1):45-8. PubMed ID: 10636240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based design and synthesis of macrocyclic human rhinovirus 3C protease inhibitors.
    Namoto K; Sirockin F; Sellner H; Wiesmann C; Villard F; Moreau RJ; Valeur E; Paulding SC; Schleeger S; Schipp K; Loup J; Andrews L; Swale R; Robinson M; Farady CJ
    Bioorg Med Chem Lett; 2018 Mar; 28(5):906-909. PubMed ID: 29433930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-covalent inhibitors of rhinovirus 3C protease.
    Baxter A; Chambers M; Edfeldt F; Edman K; Freeman A; Johansson C; King S; Morley A; Petersen J; Rawlins P; Spadola L; Thong B; Van de Poël H; Williams N
    Bioorg Med Chem Lett; 2011 Jan; 21(2):777-80. PubMed ID: 21183345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-Acylamino-azetidin-2-one as a novel class of cysteine proteases inhibitors.
    Zhou NE; Guo D; Thomas G; Reddy AV; Kaleta J; Purisima E; Menard R; Micetich RG; Singh R
    Bioorg Med Chem Lett; 2003 Jan; 13(1):139-41. PubMed ID: 12467634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the synthesis, design and selection of cysteine protease inhibitors.
    Hernandez AA; Roush WR
    Curr Opin Chem Biol; 2002 Aug; 6(4):459-65. PubMed ID: 12133721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of cysteine proteases of Plasmodium vivax as antimalarial drug targets: sequence analysis and sensitivity to cysteine protease inhibitors.
    Na BK; Kim TS; Rosenthal PJ; Lee JK; Kong Y
    Parasitol Res; 2004 Oct; 94(4):312-7. PubMed ID: 15372231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of the cathepsin cysteine proteases B and K by square-planar cycloaurated gold(III) compounds and investigation of their anti-cancer activity.
    Zhu Y; Cameron BR; Mosi R; Anastassov V; Cox J; Qin L; Santucci Z; Metz M; Skerlj RT; Fricker SP
    J Inorg Biochem; 2011 May; 105(5):754-62. PubMed ID: 21481817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants.
    Solomon M; Belenghi B; Delledonne M; Menachem E; Levine A
    Plant Cell; 1999 Mar; 11(3):431-44. PubMed ID: 10072402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.