These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A novel assay for the distribution of pyrithione biocides in bacterial cells. Dinning AJ; al-Adham IS; Austin P; Collier PJ Lett Appl Microbiol; 1998 Jul; 27(1):1-4. PubMed ID: 9722990 [TBL] [Abstract][Full Text] [Related]
7. Pseudomonas aeruginosa PAO1 adapted to 2-phenoxyethanol shows cross-resistance to dissimilar biocides and increased susceptibility to antibiotics. Abdel Malek SM; Badran YR Folia Microbiol (Praha); 2010 Nov; 55(6):588-92. PubMed ID: 21253903 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of antibiotic and antimicrobial biocide susceptibility data in clinical isolates of methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa between 1989 and 2000. Lambert RJ J Appl Microbiol; 2004; 97(4):699-711. PubMed ID: 15357719 [TBL] [Abstract][Full Text] [Related]
9. Growth media and assay plate material can impact on the effectiveness of cationic biocides and antibiotics against different bacterial species. Bock LJ; Hind CK; Sutton JM; Wand ME Lett Appl Microbiol; 2018 May; 66(5):368-377. PubMed ID: 29432643 [TBL] [Abstract][Full Text] [Related]
10. Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii - A first report from the Kingdom of Saudi Arabia. Vijayakumar R; Sandle T; Al-Aboody MS; AlFonaisan MK; Alturaiki W; Mickymaray S; Premanathan M; Alsagaby SA J Infect Public Health; 2018; 11(6):812-816. PubMed ID: 29907439 [TBL] [Abstract][Full Text] [Related]
11. Resistance of Pseudomonas aeruginosa to isothiazolone. Brözel VS; Cloete TE J Appl Bacteriol; 1994 Jun; 76(6):576-82. PubMed ID: 8027006 [TBL] [Abstract][Full Text] [Related]
12. Integron occurrence is linked to reduced biocide susceptibility in multidrug resistant Pseudomonas aeruginosa. Kadry AA; Serry FM; El-Ganiny AM; El-Baz AM Br J Biomed Sci; 2017 Apr; 74(2):78-84. PubMed ID: 28281934 [TBL] [Abstract][Full Text] [Related]
13. Effect of outer membrane permeabilisation on intrinsic resistance to low triclosan levels in Pseudomonas aeruginosa. Champlin FR; Ellison ML; Bullard JW; Conrad RS Int J Antimicrob Agents; 2005 Aug; 26(2):159-164. PubMed ID: 16040235 [TBL] [Abstract][Full Text] [Related]
14. Adaptation to Biocides Cetrimide and Chlorhexidine in Bacteria from Organic Foods: Association with Tolerance to Other Antimicrobials and Physical Stresses. Gadea R; Glibota N; Pérez Pulido R; Gálvez A; Ortega E J Agric Food Chem; 2017 Mar; 65(8):1758-1770. PubMed ID: 28177232 [TBL] [Abstract][Full Text] [Related]
15. Effect of adaptation process of Pseudomonas aeruginosa to didecyldimethylammonium chloride in 2-propanol on bactericidal efficiency of this active substance. Chojecka A; Wiercińska O; Röhm-Rodowald E; Kanclerski K; Jakimiak B Rocz Panstw Zakl Hig; 2014; 65(4):359-64. PubMed ID: 25526583 [TBL] [Abstract][Full Text] [Related]
17. Pseudomonas aeruginosa adapts to octenidine in the laboratory and a simulated clinical setting, leading to increased tolerance to chlorhexidine and other biocides. Shepherd MJ; Moore G; Wand ME; Sutton JM; Bock LJ J Hosp Infect; 2018 Nov; 100(3):e23-e29. PubMed ID: 29614247 [TBL] [Abstract][Full Text] [Related]
18. A peptide based on homologous sequences of the β-barrel assembly machinery component BamD potentiates antibiotic susceptibility of Pseudomonas aeruginosa. Mori N; Ishii Y; Tateda K; Kimura S; Kouyama Y; Inoko H; Mitsunaga S; Yamaguchi K; Yoshihara E J Antimicrob Chemother; 2012 Sep; 67(9):2173-81. PubMed ID: 22628248 [TBL] [Abstract][Full Text] [Related]
19. Resistance of Pseudomonas aeruginosa to amphoteric and quaternary ammonium biocides. Jones MV; Herd TM; Christie HJ Microbios; 1989; 58(234):49-61. PubMed ID: 2500580 [TBL] [Abstract][Full Text] [Related]