These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 11967066)
1. HSF and Msn2/4p can exclusively or cooperatively activate the yeast HSP104 gene. Grably MR; Stanhill A; Tell O; Engelberg D Mol Microbiol; 2002 Apr; 44(1):21-35. PubMed ID: 11967066 [TBL] [Abstract][Full Text] [Related]
2. Upregulation of the Hsp104 chaperone at physiological temperature during recovery from thermal insult. Seppä L; Hänninen AL; Makarow M Mol Microbiol; 2004 Apr; 52(1):217-25. PubMed ID: 15049822 [TBL] [Abstract][Full Text] [Related]
3. Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Amorós M; Estruch F Mol Microbiol; 2001 Mar; 39(6):1523-32. PubMed ID: 11260469 [TBL] [Abstract][Full Text] [Related]
4. Stress induction of HSP30, the plasma membrane heat shock protein gene of Saccharomyces cerevisiae, appears not to use known stress-regulated transcription factors. Seymour IJ; Piper PW Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():231-239. PubMed ID: 10206703 [TBL] [Abstract][Full Text] [Related]
5. Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Zähringer H; Thevelein JM; Nwaka S Mol Microbiol; 2000 Jan; 35(2):397-406. PubMed ID: 10652100 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference. Liu Y; Ye S; Erkine AM In Silico Biol; 2009; 9(5-6):379-89. PubMed ID: 22430439 [TBL] [Abstract][Full Text] [Related]
7. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes. Versele M; Thevelein JM; Van Dijck P Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784 [TBL] [Abstract][Full Text] [Related]
8. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements. Hashikawa N; Yamamoto N; Sakurai H J Biol Chem; 2007 Apr; 282(14):10333-40. PubMed ID: 17289668 [TBL] [Abstract][Full Text] [Related]
9. Saccharomyces cerevisiae HSP70 heat shock elements are functionally distinct. Young MR; Craig EA Mol Cell Biol; 1993 Sep; 13(9):5637-46. PubMed ID: 8355706 [TBL] [Abstract][Full Text] [Related]
10. Multiple independent regulatory pathways control UBI4 expression after heat shock in Saccharomyces cerevisiae. Simon JR; Treger JM; McEntee K Mol Microbiol; 1999 Feb; 31(3):823-32. PubMed ID: 10048026 [TBL] [Abstract][Full Text] [Related]
11. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672 [TBL] [Abstract][Full Text] [Related]
12. A distal heat shock element promotes the rapid response to heat shock of the HSP26 gene in the yeast Saccharomyces cerevisiae. Chen J; Pederson DS J Biol Chem; 1993 Apr; 268(10):7442-8. PubMed ID: 8463277 [TBL] [Abstract][Full Text] [Related]
13. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Schmitt AP; McEntee K Proc Natl Acad Sci U S A; 1996 Jun; 93(12):5777-82. PubMed ID: 8650168 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element. Hashikawa N; Sakurai H Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761 [TBL] [Abstract][Full Text] [Related]
15. A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae. Tachibana T; Astumi S; Shioda R; Ueno M; Uritani M; Ushimaru T J Biol Chem; 2002 Jun; 277(25):22140-6. PubMed ID: 11940587 [TBL] [Abstract][Full Text] [Related]
16. Effects of heat stress on yeast heat shock factor-promoter binding in vivo. Li N; Zhang LM; Zhang KQ; Deng JS; Prändl R; Schöffl F Acta Biochim Biophys Sin (Shanghai); 2006 May; 38(5):356-62. PubMed ID: 16680377 [TBL] [Abstract][Full Text] [Related]
17. Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae. Yamamoto N; Maeda Y; Ikeda A; Sakurai H Eukaryot Cell; 2008 May; 7(5):783-90. PubMed ID: 18359875 [TBL] [Abstract][Full Text] [Related]
18. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Hahn JS; Neef DW; Thiele DJ Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235 [TBL] [Abstract][Full Text] [Related]
19. Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Winderickx J; de Winde JH; Crauwels M; Hino A; Hohmann S; Van Dijck P; Thevelein JM Mol Gen Genet; 1996 Sep; 252(4):470-82. PubMed ID: 8879249 [TBL] [Abstract][Full Text] [Related]
20. Dynamic protein-DNA architecture of a yeast heat shock promoter. Giardina C; Lis JT Mol Cell Biol; 1995 May; 15(5):2737-44. PubMed ID: 7739554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]