BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 11967077)

  • 1. The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens.
    Ohtani K; Hayashi H; Shimizu T
    Mol Microbiol; 2002 Apr; 44(1):171-9. PubMed ID: 11967077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virulence gene regulation by the agr system in Clostridium perfringens.
    Ohtani K; Yuan Y; Hassan S; Wang R; Wang Y; Shimizu T
    J Bacteriol; 2009 Jun; 191(12):3919-27. PubMed ID: 19363118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens.
    Varga J; Stirewalt VL; Melville SB
    J Bacteriol; 2004 Aug; 186(16):5221-9. PubMed ID: 15292123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene.
    Awad MM; Bryant AE; Stevens DL; Rood JI
    Mol Microbiol; 1995 Jan; 15(2):191-202. PubMed ID: 7746141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar inhibits the production of the toxins that trigger clostridial gas gangrene.
    Méndez MB; Goñi A; Ramirez W; Grau RR
    Microb Pathog; 2012 Jan; 52(1):85-91. PubMed ID: 22079896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas gangrene-associated gliding motility is regulated by the Clostridium perfringens CpAL/VirSR system.
    Valeriani RG; Beard LL; Moller A; Ohtani K; Vidal JE
    Anaerobe; 2020 Dec; 66():102287. PubMed ID: 33130105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene.
    Awad MM; Ellemor DM; Boyd RL; Emmins JJ; Rood JI
    Infect Immun; 2001 Dec; 69(12):7904-10. PubMed ID: 11705975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system.
    Carter GP; Purdy D; Williams P; Minton NP
    J Med Microbiol; 2005 Feb; 54(Pt 2):119-127. PubMed ID: 15673504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-complementation of Clostridium perfringens PLC and Clostridium septicum alpha-toxin mutants reveals PLC is sufficient to mediate gas gangrene.
    Kennedy CL; Lyras D; Cheung JK; Hiscox TJ; Emmins JJ; Rood JI
    Microbes Infect; 2009 Mar; 11(3):413-8. PubMed ID: 19284973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens.
    Ohtani K; Bhowmik SK; Hayashi H; Shimizu T
    FEMS Microbiol Lett; 2002 Mar; 209(1):113-8. PubMed ID: 12007663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanolamine utilization supports Clostridium perfringens growth in infected tissues.
    Yagi H; Nakayama-Imaohji H; Nariya H; Tada A; Yamasaki H; Ugai H; Elahi M; Ono T; Kuwahara T
    Microb Pathog; 2018 Jun; 119():200-207. PubMed ID: 29654901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Clostridium perfringens alpha-toxin (PLC) and perfringolysin O (PFO) on cytotoxicity to macrophages, on escape from the phagosomes of macrophages, and on persistence of C. perfringens in host tissues.
    O'Brien DK; Melville SB
    Infect Immun; 2004 Sep; 72(9):5204-15. PubMed ID: 15322015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of alpha-toxin, theta-toxin and kappa-toxin mutants of Clostridium perfringens by Tn916 mutagenesis.
    Awad MM; Rood JI
    Microb Pathog; 1997 May; 22(5):275-84. PubMed ID: 9160297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of genetically manipulated strains of Clostridium perfringens reveals that both alpha-toxin and theta-toxin are required for vascular leukostasis to occur in experimental gas gangrene.
    Ellemor DM; Baird RN; Awad MM; Boyd RL; Rood JI; Emmins JJ
    Infect Immun; 1999 Sep; 67(9):4902-7. PubMed ID: 10456947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates.
    Vidal JE; Ohtani K; Shimizu T; McClane BA
    Cell Microbiol; 2009 Sep; 11(9):1306-28. PubMed ID: 19438515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and cellular basis of microvascular perfusion deficits induced by Clostridium perfringens and Clostridium septicum.
    Hickey MJ; Kwan RY; Awad MM; Kennedy CL; Young LF; Hall P; Cordner LM; Lyras D; Emmins JJ; Rood JI
    PLoS Pathog; 2008 Apr; 4(4):e1000045. PubMed ID: 18404211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system.
    Kim SY; Lee SE; Kim YR; Kim CM; Ryu PY; Choy HE; Chung SS; Rhee JH
    Mol Microbiol; 2003 Jun; 48(6):1647-64. PubMed ID: 12791145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercellular communication in Helicobacter pylori: luxS is essential for the production of an extracellular signaling molecule.
    Forsyth MH; Cover TL
    Infect Immun; 2000 Jun; 68(6):3193-9. PubMed ID: 10816463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a toxin-deficient Clostridium perfringens strain, KZ1340.
    Shimizu T; Ohtani K; Ba-Thein W; Inui S; Nakamura S; Hayashi H
    Microbiol Immunol; 1996; 40(2):141-5. PubMed ID: 8867610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Agr-Like Quorum-Sensing System Is Important for
    Navarro MA; Li J; Beingesser J; McClane BA; Uzal FA
    mSphere; 2020 Jun; 5(3):. PubMed ID: 32554714
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.