These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 11967095)

  • 61. Root exudation of phytosiderophores from soil-grown wheat.
    Oburger E; Gruber B; Schindlegger Y; Schenkeveld WDC; Hann S; Kraemer SM; Wenzel WW; Puschenreiter M
    New Phytol; 2014 Sep; 203(4):1161-1174. PubMed ID: 24890330
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress.
    Gómez-Galera S; Sudhakar D; Pelacho AM; Capell T; Christou P
    Plant Physiol Biochem; 2012 Apr; 53():46-53. PubMed ID: 22316602
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgare.
    Okumura N; Nishizawa NK; Umehara Y; Ohata T; Nakanishi H; Yamaguchi T; Chino M; Mori S
    Plant Mol Biol; 1994 Jul; 25(4):705-19. PubMed ID: 8061321
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes.
    Kobayashi T; Itai RN; Ogo Y; Kakei Y; Nakanishi H; Takahashi M; Nishizawa NK
    Plant J; 2009 Dec; 60(6):948-61. PubMed ID: 19737364
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Iron deficiency tolerance traits in wild (Hordeum maritimum) and cultivated barley (Hordeum vulgare).
    Yousfi S; Rabhi M; Abdelly C; Gharsalli M
    C R Biol; 2009 Jun; 332(6):523-33. PubMed ID: 19520315
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mugineic acid derivatives as molecular probes for the mechanistic elucidation of iron acquisition in barley.
    Namba K; Kobayashi K; Murata Y; Hirakawa H; Yamagaki T; Iwashita T; Nishizawa M; Kusumoto S; Tanino K
    Angew Chem Int Ed Engl; 2010 Dec; 49(51):9956-9. PubMed ID: 21108292
    [No Abstract]   [Full Text] [Related]  

  • 67. Competition between micro-organisms and roots of barley and sorghum for iron accumulated in the root apoplasm.
    Wirén NV; Römheld V; Shioiri T; Marschner H
    New Phytol; 1995 Aug; 130(4):511-521. PubMed ID: 33874479
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Zinc deficiency-induced phytosiderophore release by the Triticaceae is not consistently expressed in solution culture.
    Pedler JF; Parker DR; Crowley DE
    Planta; 2000 Jun; 211(1):120-6. PubMed ID: 10923712
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.
    Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R
    BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Yellow stripe1. Expanded roles for the maize iron-phytosiderophore transporter.
    Roberts LA; Pierson AJ; Panaviene Z; Walker EL
    Plant Physiol; 2004 May; 135(1):112-20. PubMed ID: 15107503
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants.
    Kobayashi T; Nakayama Y; Itai RN; Nakanishi H; Yoshihara T; Mori S; Nishizawa NK
    Plant J; 2003 Dec; 36(6):780-93. PubMed ID: 14675444
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparative transcriptome analyses of barley and rice under salt stress.
    Ueda A; Kathiresan A; Bennett J; Takabe T
    Theor Appl Genet; 2006 May; 112(7):1286-94. PubMed ID: 16496119
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat (Triticum aestivum L.).
    Beasley JT; Bonneau JP; Johnson AAT
    PLoS One; 2017; 12(5):e0177061. PubMed ID: 28475636
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration.
    Haase S; Rothe A; Kania A; Wasaki J; Römheld V; Engels C; Kandeler E; Neumann G
    J Environ Qual; 2008; 37(3):1254-62. PubMed ID: 18453445
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rice genes involved in phytosiderophore biosynthesis are synchronously regulated during the early stages of iron deficiency in roots.
    Itai RN; Ogo Y; Kobayashi T; Nakanishi H; Nishizawa NK
    Rice (N Y); 2013 Jun; 6(1):16. PubMed ID: 24280375
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effect of nitrogen on root release of phytosiderophores and root uptake of Fe(III)-phytosiderophore in Fe-deficient wheat plants.
    Aciksoz SB; Ozturk L; Gokmen OO; Römheld V; Cakmak I
    Physiol Plant; 2011 Jul; 142(3):287-96. PubMed ID: 21338370
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport.
    Banakar R; Alvarez Fernández Á; Abadía J; Capell T; Christou P
    Plant Biotechnol J; 2017 Apr; 15(4):423-432. PubMed ID: 27633505
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Transcriptome Analysis Reveals the Response of Iron Homeostasis to Early Feeding by Small Brown Planthopper in Rice.
    Zhang W; Yan C; Li M; Yang L; Ma B; Meng H; Xie L; Chen J
    J Agric Food Chem; 2017 Feb; 65(6):1093-1101. PubMed ID: 28112511
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation.
    Astolfi S; Zuchi S; Neumann G; Cesco S; Sanità di Toppi L; Pinton R
    J Exp Bot; 2012 Feb; 63(3):1241-50. PubMed ID: 22090437
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Bioinorganic Chemistry of Iron].
    Mino Y
    Yakugaku Zasshi; 2018; 138(3):373-387. PubMed ID: 29503431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.