These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 11967153)
1. Trichromacy in Australian marsupials. Arrese CA; Hart NS; Thomas N; Beazley LD; Shand J Curr Biol; 2002 Apr; 12(8):657-60. PubMed ID: 11967153 [TBL] [Abstract][Full Text] [Related]
2. Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus). Arrese CA; Oddy AY; Runham PB; Hart NS; Shand J; Hunt DM; Beazley LD Proc Biol Sci; 2005 Apr; 272(1565):791-6. PubMed ID: 15888411 [TBL] [Abstract][Full Text] [Related]
3. Diversity of color vision: not all Australian marsupials are trichromatic. Ebeling W; Natoli RC; Hemmi JM PLoS One; 2010 Dec; 5(12):e14231. PubMed ID: 21151905 [TBL] [Abstract][Full Text] [Related]
4. Topographies of retinal cone photoreceptors in two Australian marsupials. Arrese CA; Rodger J; Beazley LD; Shand J Vis Neurosci; 2003; 20(3):307-11. PubMed ID: 14570252 [TBL] [Abstract][Full Text] [Related]
5. Cone visual pigments in two marsupial species: the fat-tailed dunnart (Sminthopsis crassicaudata) and the honey possum (Tarsipes rostratus). Cowing JA; Arrese CA; Davies WL; Beazley LD; Hunt DM Proc Biol Sci; 2008 Jul; 275(1642):1491-9. PubMed ID: 18426754 [TBL] [Abstract][Full Text] [Related]
6. Cone visual pigments of the Australian marsupials, the stripe-faced and fat-tailed dunnarts: sequence and inferred spectral properties. Strachan J; Chang LY; Wakefield MJ; Graves JA; Deeb SS Vis Neurosci; 2004; 21(3):223-9. PubMed ID: 15518192 [TBL] [Abstract][Full Text] [Related]
7. The ecology of visual pigment tuning in an Australian marsupial: the honey possum Tarsipes rostratus. Sumner P; Arrese CA; Partridge JC J Exp Biol; 2005 May; 208(Pt 10):1803-15. PubMed ID: 15879062 [TBL] [Abstract][Full Text] [Related]
8. Spectral tuning of the long wavelength-sensitive cone pigment in four Australian marsupials. Arrese CA; Beazley LD; Ferguson MC; Oddy A; Hunt DM Gene; 2006 Oct; 381():13-7. PubMed ID: 16859843 [TBL] [Abstract][Full Text] [Related]
9. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology. Silveira LC; Saito CA; da Silva Filho M; Kremers J; Bowmaker JK; Lee BB PLoS One; 2014; 9(11):e113321. PubMed ID: 25405863 [TBL] [Abstract][Full Text] [Related]
10. Photoreceptor topography and spectral sensitivity in the common brushtail possum (Trichosurus vulpecula). Vlahos LM; Knott B; Valter K; Hemmi JM J Comp Neurol; 2014 Oct; 522(15):3423-36. PubMed ID: 24737644 [TBL] [Abstract][Full Text] [Related]
11. Mix and match color vision: tuning spectral sensitivity by differential opsin gene expression in Lake Malawi cichlids. Parry JW; Carleton KL; Spady T; Carboo A; Hunt DM; Bowmaker JK Curr Biol; 2005 Oct; 15(19):1734-9. PubMed ID: 16213819 [TBL] [Abstract][Full Text] [Related]
12. Evolution of colour vision in vertebrates. Bowmaker JK Eye (Lond); 1998; 12 ( Pt 3b)():541-7. PubMed ID: 9775215 [TBL] [Abstract][Full Text] [Related]
13. Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. Hart NS; Lisney TJ; Marshall NJ; Collin SP J Exp Biol; 2004 Dec; 207(Pt 26):4587-94. PubMed ID: 15579554 [TBL] [Abstract][Full Text] [Related]
14. [Electroretinographic study of chromatic vision]. Cunha DC; HokoƧ JN; Dantas AM; Moraes Junior HV; Moraes AM Arq Bras Oftalmol; 2006; 69(6):857-63. PubMed ID: 17273680 [TBL] [Abstract][Full Text] [Related]
15. Genetically engineered mice with an additional class of cone photoreceptors: implications for the evolution of color vision. Smallwood PM; Olveczky BP; Williams GL; Jacobs GH; Reese BE; Meister M; Nathans J Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11706-11. PubMed ID: 14500905 [TBL] [Abstract][Full Text] [Related]
16. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution. Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969 [TBL] [Abstract][Full Text] [Related]
17. Evolution and spectral tuning of visual pigments in birds and mammals. Hunt DM; Carvalho LS; Cowing JA; Davies WL Philos Trans R Soc Lond B Biol Sci; 2009 Oct; 364(1531):2941-55. PubMed ID: 19720655 [TBL] [Abstract][Full Text] [Related]
18. The unique paired retinal vascular pattern in marsupials: structural, functional and evolutionary perspectives based on observations in a range of species. McMenamin PG Br J Ophthalmol; 2007 Oct; 91(10):1399-405. PubMed ID: 17475712 [TBL] [Abstract][Full Text] [Related]
19. The rod opsin pigments from two marsupial species, the South American bare-tailed woolly opossum and the Australian fat-tailed dunnart. Hunt DM; Arrese CA; von Dornum M; Rodger J; Oddy A; Cowing JA; Ager EI; Bowmaker JK; Beazley LD; Shand J Gene; 2003 Dec; 323():157-62. PubMed ID: 14659889 [TBL] [Abstract][Full Text] [Related]
20. Visual pigments in a palaeognath bird, the emu Dromaius novaehollandiae: implications for spectral sensitivity and the origin of ultraviolet vision. Hart NS; Mountford JK; Davies WI; Collin SP; Hunt DM Proc Biol Sci; 2016 Jul; 283(1834):. PubMed ID: 27383819 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]