BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11967225)

  • 21. The decrease of the cytoskeleton tubulin follows the decrease of the associating molecular chaperone alphaB-crystallin in unloaded soleus muscle atrophy without stretch.
    Sakurai T; Fujita Y; Ohto E; Oguro A; Atomi Y
    FASEB J; 2005 Jul; 19(9):1199-201. PubMed ID: 15894563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Patterns of global gene expression in rat skeletal muscle during unloading and low-intensity ambulatory activity.
    Bey L; Akunuri N; Zhao P; Hoffman EP; Hamilton DG; Hamilton MT
    Physiol Genomics; 2003 Apr; 13(2):157-67. PubMed ID: 12582208
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal.
    Vermillion KL; Anderson KJ; Hampton M; Andrews MT
    Physiol Genomics; 2015 Mar; 47(3):58-74. PubMed ID: 25572546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal pattern of skeletal muscle gene expression following endurance exercise in Alaskan sled dogs.
    Brass EP; Peters MA; Hinchcliff KW; He YD; Ulrich RG
    J Appl Physiol (1985); 2009 Aug; 107(2):605-12. PubMed ID: 19498091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentially expressed genes and morphological changes during lengthened immobilization in rat soleus muscle.
    Kim JW; Kwon OY; Kim MH
    Differentiation; 2007 Feb; 75(2):147-57. PubMed ID: 17316384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats.
    Davidson ME; Kerepesi LA; Soto A; Chan VT
    Arch Toxicol; 2009 Aug; 83(8):747-62. PubMed ID: 19212759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human muscle gene expression responses to endurance training provide a novel perspective on Duchenne muscular dystrophy.
    Timmons JA; Larsson O; Jansson E; Fischer H; Gustafsson T; Greenhaff PL; Ridden J; Rachman J; Peyrard-Janvid M; Wahlestedt C; Sundberg CJ
    FASEB J; 2005 May; 19(7):750-60. PubMed ID: 15857889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soleus motoneuron excitability after rat hindlimb unloading using histology and a new electrophysiological approach to record a neurographic analogue of the H-reflex.
    De-Doncker L; Kasri M; Falempin M
    Exp Neurol; 2006 Oct; 201(2):368-74. PubMed ID: 16759652
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding skeletal muscle adaptation to exercise training in humans: contributions from microarray studies.
    Mahoney DJ; Tarnopolsky MA
    Phys Med Rehabil Clin N Am; 2005 Nov; 16(4):859-73, vii. PubMed ID: 16214048
    [No Abstract]   [Full Text] [Related]  

  • 30. Conserved and muscle-group-specific gene expression patterns shape postnatal development of the novel extraocular muscle phenotype.
    Cheng G; Merriam AP; Gong B; Leahy P; Khanna S; Porter JD
    Physiol Genomics; 2004 Jul; 18(2):184-95. PubMed ID: 15138310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of hind limb muscle unloading on liver metabolism of rats.
    Stein TP; Schluter MD; Galante AT; Soteropoulos P; Ramirez M; Bigbee A; Grindeland RE; Wade CE
    J Nutr Biochem; 2005 Jan; 16(1):9-16. PubMed ID: 15629235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of two weeks of non-weight bearing on rat soleus motoneurons and muscle fibers.
    Ishihara A; Oishi Y; Roy RR; Edgerton VR
    Aviat Space Environ Med; 1997 May; 68(5):421-5. PubMed ID: 9143753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptation of rat soleus muscle spindles after 21 days of hindlimb unloading.
    Rosant C; Nagel MD; PĂ©rot C
    Exp Neurol; 2006 Jul; 200(1):191-9. PubMed ID: 16624292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of control and immobilized skeletal muscle: an overview from genetic engineering.
    St-Amand J; Okamura K; Matsumoto K; Shimizu S; Sogawa Y
    FASEB J; 2001 Mar; 15(3):684-92. PubMed ID: 11259386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.
    Xu S; Liu X; Chen Z; Li G; Chen Q; Zhou G; Ma R; Yao X; Huang X
    Gene; 2016 Dec; 594(2):229-237. PubMed ID: 27613141
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth.
    Chaillou T; Jackson JR; England JH; Kirby TJ; Richards-White J; Esser KA; Dupont-Versteegden EE; McCarthy JJ
    J Appl Physiol (1985); 2015 Jan; 118(1):86-97. PubMed ID: 25554798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive expression profiling by muscle tissue class and identification of the molecular niche of extraocular muscle.
    Khanna S; Merriam AP; Gong B; Leahy P; Porter JD
    FASEB J; 2003 Jul; 17(10):1370-2. PubMed ID: 12832294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microarray analysis reveals novel features of the muscle aging process in men and women.
    Liu D; Sartor MA; Nader GA; Pistilli EE; Tanton L; Lilly C; Gutmann L; IglayReger HB; Visich PS; Hoffman EP; Gordon PM
    J Gerontol A Biol Sci Med Sci; 2013 Sep; 68(9):1035-44. PubMed ID: 23418191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional profile of postmortem skeletal muscle.
    Sanoudou D; Kang PB; Haslett JN; Han M; Kunkel LM; Beggs AH
    Physiol Genomics; 2004 Jan; 16(2):222-8. PubMed ID: 14625377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Muscular expressions: profiling genes in complex tissues.
    Hampson R; Hughes SM
    Genome Biol; 2001; 2(12):REVIEWS1033. PubMed ID: 11790260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.