BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1051 related articles for article (PubMed ID: 11967288)

  • 1. Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4(+) T cells.
    Popik W; Alce TM; Au WC
    J Virol; 2002 May; 76(10):4709-22. PubMed ID: 11967288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segregation of CD4 and CXCR4 into distinct lipid microdomains in T lymphocytes suggests a mechanism for membrane destabilization by human immunodeficiency virus.
    Kozak SL; Heard JM; Kabat D
    J Virol; 2002 Feb; 76(4):1802-15. PubMed ID: 11799176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic reorganization of chemokine receptors, cholesterol, lipid rafts, and adhesion molecules to sites of CD4 engagement.
    Nguyen DH; Giri B; Collins G; Taub DD
    Exp Cell Res; 2005 Apr; 304(2):559-69. PubMed ID: 15748900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raft localization of CXCR4 is primarily required for X4-tropic human immunodeficiency virus type 1 infection.
    Kamiyama H; Yoshii H; Tanaka Y; Sato H; Yamamoto N; Kubo Y
    Virology; 2009 Mar; 386(1):23-31. PubMed ID: 19178925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane raft microdomains mediate lateral assemblies required for HIV-1 infection.
    Mañes S; del Real G; Lacalle RA; Lucas P; Gómez-Moutón C; Sánchez-Palomino S; Delgado R; Alcamí J; Mira E; Martínez-A C
    EMBO Rep; 2000 Aug; 1(2):190-6. PubMed ID: 11265761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD4 receptor localized to non-raft membrane microdomains supports HIV-1 entry. Identification of a novel raft localization marker in CD4.
    Popik W; Alce TM
    J Biol Chem; 2004 Jan; 279(1):704-12. PubMed ID: 14570906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of determinants on a dualtropic human immunodeficiency virus type 1 envelope glycoprotein that confer usage of CXCR4.
    Cho MW; Lee MK; Carney MC; Berson JF; Doms RW; Martin MA
    J Virol; 1998 Mar; 72(3):2509-15. PubMed ID: 9499115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human immunodeficiency virus type 1 virological synapse formation in T cells requires lipid raft integrity.
    Jolly C; Sattentau QJ
    J Virol; 2005 Sep; 79(18):12088-94. PubMed ID: 16140785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HIV-1 entry into T-cells is not dependent on CD4 and CCR5 localization to sphingolipid-enriched, detergent-resistant, raft membrane domains.
    Percherancier Y; Lagane B; Planchenault T; Staropoli I; Altmeyer R; Virelizier JL; Arenzana-Seisdedos F; Hoessli DC; Bachelerie F
    J Biol Chem; 2003 Jan; 278(5):3153-61. PubMed ID: 12431990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CCR5, CXCR4, and CD4 are clustered and closely apposed on microvilli of human macrophages and T cells.
    Singer II; Scott S; Kawka DW; Chin J; Daugherty BL; DeMartino JA; DiSalvo J; Gould SL; Lineberger JE; Malkowitz L; Miller MD; Mitnaul L; Siciliano SJ; Staruch MJ; Williams HR; Zweerink HJ; Springer MS
    J Virol; 2001 Apr; 75(8):3779-90. PubMed ID: 11264367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1.
    Liao Z; Cimakasky LM; Hampton R; Nguyen DH; Hildreth JE
    AIDS Res Hum Retroviruses; 2001 Jul; 17(11):1009-19. PubMed ID: 11485618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of cholesterol and sphingolipids in chemokine receptor function and HIV-1 envelope glycoprotein-mediated fusion.
    Ablan S; Rawat SS; Viard M; Wang JM; Puri A; Blumenthal R
    Virol J; 2006 Dec; 3():104. PubMed ID: 17187670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CXCR4 function requires membrane cholesterol: implications for HIV infection.
    Nguyen DH; Taub D
    J Immunol; 2002 Apr; 168(8):4121-6. PubMed ID: 11937572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid rafts are involved in SARS-CoV entry into Vero E6 cells.
    Lu Y; Liu DX; Tam JP
    Biochem Biophys Res Commun; 2008 May; 369(2):344-9. PubMed ID: 18279660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Glycosylphosphatidylinositol-Anchored Variable Region of Llama Heavy Chain-Only Antibody JM4 Efficiently Blocks both Cell-Free and T Cell-T Cell Transmission of Human Immunodeficiency Virus Type 1.
    Liu L; Wang W; Matz J; Ye C; Bracq L; Delon J; Kimata JT; Chen Z; Benichou S; Zhou P
    J Virol; 2016 Dec; 90(23):10642-10659. PubMed ID: 27654286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CD4-independent infection of two CD4(-)/CCR5(-)/CXCR4(+) pre-T-cell lines by human and simian immunodeficiency viruses.
    Borsetti A; Parolin C; Ridolfi B; Sernicola L; Geraci A; Ensoli B; Titti F
    J Virol; 2000 Jul; 74(14):6689-94. PubMed ID: 10864687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palmitic Acid Is a Novel CD4 Fusion Inhibitor That Blocks HIV Entry and Infection.
    Lee DY; Lin X; Paskaleva EE; Liu Y; Puttamadappa SS; Thornber C; Drake JR; Habulin M; Shekhtman A; Canki M
    AIDS Res Hum Retroviruses; 2009 Dec; 25(12):1231-41. PubMed ID: 20001317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo.
    Reeves JD; Hibbitts S; Simmons G; McKnight A; Azevedo-Pereira JM; Moniz-Pereira J; Clapham PR
    J Virol; 1999 Sep; 73(9):7795-804. PubMed ID: 10438870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Envelope-dependent restriction of human immunodeficiency virus type 1 spreading in CD4(+) T lymphocytes: R5 but not X4 viruses replicate in the absence of T-cell receptor restimulation.
    Vicenzi E; Bordignon PP; Biswas P; Brambilla A; Bovolenta C; Cota M; Sinigaglia F; Poli G
    J Virol; 1999 Sep; 73(9):7515-23. PubMed ID: 10438841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Replication-competent rhabdoviruses with human immunodeficiency virus type 1 coats and green fluorescent protein: entry by a pH-independent pathway.
    Boritz E; Gerlach J; Johnson JE; Rose JK
    J Virol; 1999 Aug; 73(8):6937-45. PubMed ID: 10400792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.