These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 11967834)

  • 1. Isolation and mapping of self-assembling protein domains encoded by the Saccharomyces cerevisiae genome using lambda repressor fusions.
    Mariño-Ramírez L; Hu JC
    Yeast; 2002 May; 19(7):641-50. PubMed ID: 11967834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and mapping of self-assembling protein domains encoded by the Escherichia coli K-12 genome by use of lambda repressor fusions.
    Mariño-Ramírez L; Minor JL; Reading N; Hu JC
    J Bacteriol; 2004 Mar; 186(5):1311-9. PubMed ID: 14973045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genetic screen to identify sequences that mediate protein oligomerization in Escherichia coli.
    Jappelli R; Brenner S
    Biochem Biophys Res Commun; 1999 Dec; 266(1):243-7. PubMed ID: 10581196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Gal80p-interacting proteins by Saccharomyces cerevisiae whole genome phage display.
    Hertveldt K; Dechassa ML; Robben J; Volckaert G
    Gene; 2003 Mar; 307():141-9. PubMed ID: 12706896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constraining protein sequence space: four amino acid alphabets are sufficient to recapitulate lambda repressor multimerization.
    Maillet DS; Drummond JT
    J Mol Biol; 2007 Nov; 374(2):399-410. PubMed ID: 17931656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pathway for targeting soluble misfolded proteins to the yeast vacuole.
    Hong E; Davidson AR; Kaiser CA
    J Cell Biol; 1996 Nov; 135(3):623-33. PubMed ID: 8909538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A temperature-sensitive lambda cI repressor functions on a modified operator in yeast cells by masking the TATA element.
    Wedler H; Wambutt R
    Mol Gen Genet; 1995 Aug; 248(4):499-505. PubMed ID: 7565615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between cAMP-dependent protein kinase catalytic subunit and peptide inhibitors analyzed with lambda repressor fusions.
    Jappelli R; Brenner S
    J Mol Biol; 1996 Jun; 259(4):575-8. PubMed ID: 8683565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic selection for mutations that impair the co-operative binding of lambda repressor.
    Benson N; Adams C; Youderian P
    Mol Microbiol; 1994 Feb; 11(3):567-79. PubMed ID: 8152379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-hybrid system for characterization of protein-protein interactions in E. coli.
    Hays LB; Chen YS; Hu JC
    Biotechniques; 2000 Aug; 29(2):288-90, 292, 294 passim. PubMed ID: 10948430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Affinity selection of DNA-binding proteins from yeast genomic DNA libraries by improved lambda phage display vector.
    Hagiwara H; Kunihiro S; Nakajima K; Sano M; Masaki H; Yamamoto M; Pak JW; Zhang Y; Takase K; Kuwabara I; Maruyama IN; Machida M
    J Biochem; 2002 Dec; 132(6):975-82. PubMed ID: 12473201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA recognition by the helix-turn-helix motif: investigation by laser Raman spectroscopy of the phage lambda repressor and its interaction with operator sites OL1 and OR3.
    Benevides JM; Weiss MA; Thomas GJ
    Biochemistry; 1991 Jun; 30(24):5955-63. PubMed ID: 1828373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-mediated assembly of weakly interacting DNA-binding protein subunits: in vitro recruitment of phage 434 repressor and yeast GCN4 DNA-binding domains.
    Guarnaccia C; Raman B; Zahariev S; Simoncsits A; Pongor S
    Nucleic Acids Res; 2004; 32(17):4992-5002. PubMed ID: 15388801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library.
    Leeds JA; Boyd D; Huber DR; Sonoda GK; Luu HT; Engelman DM; Beckwith J
    J Mol Biol; 2001 Oct; 313(1):181-95. PubMed ID: 11601855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mapping of interactions of bacteriophage lambda cro-repressor with nonspecific DNA using a method of DNA-protein chemical cross-linking].
    Ebralidze KK; Volkov SK; Kirpichnikov MP; Mirzabekov AD; Baev AA
    Dokl Akad Nauk SSSR; 1986; 287(4):1013-6. PubMed ID: 2940078
    [No Abstract]   [Full Text] [Related]  

  • 16. Subunit interactions in the assembly of Saccharomyces cerevisiae DNA polymerase alpha.
    Biswas SB; Khopde SM; Zhu Fx Fx; Biswas EE
    Nucleic Acids Res; 2003 Apr; 31(8):2056-65. PubMed ID: 12682356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The lambda and P22 phage repressors.
    Sauer RT; Nelson HC; Hehir K; Hecht MH; Gimble FS; DeAnda J; Poteete AR
    J Biomol Struct Dyn; 1983 Dec; 1(4):1011-22. PubMed ID: 6242868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA sequence dependent and independent conformational changes in multipartite operator recognition by lambda-repressor.
    Deb S; Bandyopadhyay S; Roy S
    Biochemistry; 2000 Mar; 39(12):3377-83. PubMed ID: 10727231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lambda repressor N-terminal DNA-binding domain as an assay for protein transmembrane segment interactions in vivo.
    Leeds JA; Beckwith J
    J Mol Biol; 1998 Jul; 280(5):799-810. PubMed ID: 9671551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the operator-binding domain of bacteriophage lambda repressor: implications for DNA recognition and gene regulation.
    Lewis M; Jeffrey A; Wang J; Ladner R; Ptashne M; Pabo CO
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 1():435-40. PubMed ID: 6305562
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.