BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11969250)

  • 1. Mitochondria respond to Ca2+ already in the submicromolar range: correlation with redox state.
    Pitter JG; Maechler P; Wollheim CB; Spät A
    Cell Calcium; 2002 Feb; 31(2):97-104. PubMed ID: 11969250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of cytoplasmic Ca2+ signal on the redox state of mitochondrial pyridine nucleotides.
    Spät A; Pitter JG
    Mol Cell Endocrinol; 2004 Feb; 215(1-2):115-8. PubMed ID: 15026183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Ca2+ uptake with and without the formation of high-Ca2+ microdomains.
    Szanda G; Koncz P; Várnai P; Spät A
    Cell Calcium; 2006; 40(5-6):527-37. PubMed ID: 17069884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of perimitochondrial Ca2+ concentration in bovine adrenal glomerulosa cells with aequorin targeted to the outer mitochondrial membrane.
    Brandenburger Y; Arrighi JF; Rossier MF; Maturana A; Vallotton MB; Capponi AM
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):745-53. PubMed ID: 10417340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mode of mitochondrial Ca2+ clearance and its influence on secretory responses in stimulated chromaffin cells.
    Warashina A
    Cell Calcium; 2006 Jan; 39(1):35-46. PubMed ID: 16257445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabotropic receptor-mediated Ca2+ signaling elevates mitochondrial Ca2+ and stimulates oxidative metabolism in hippocampal slice cultures.
    Kann O; Kovács R; Heinemann U
    J Neurophysiol; 2003 Aug; 90(2):613-21. PubMed ID: 12724360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species, Ca2+ signaling and mitochondrial NAD(P)H level in adrenal glomerulosa cells.
    Koncz P; Szanda G; Rajki A; Spät A
    Cell Calcium; 2006 Oct; 40(4):347-57. PubMed ID: 16765442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic Ca2+ signalling and reduction of mitochondrial pyridine nucleotides in adrenal glomerulosa cells in response to K+, angiotensin II and vasopressin.
    Rohács T; Nagy G; Spät A
    Biochem J; 1997 Mar; 322 ( Pt 3)(Pt 3):785-92. PubMed ID: 9148750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoplasmic Ca2+ at low submicromolar concentration stimulates mitochondrial metabolism in rat luteal cells.
    Szabadkai G; Pitter JG; Spät A
    Pflugers Arch; 2001 Feb; 441(5):678-85. PubMed ID: 11294250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prostaglandin F2alpha potentiates the calcium dependent activation of mitochondrial metabolism in luteal cells.
    Pitter JG; Szanda G; Duchen MR; Spät A
    Cell Calcium; 2005 Jan; 37(1):35-44. PubMed ID: 15541462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular calcium release is more efficient than calcium influx in stimulating mitochondrial NAD(P)H formation in adrenal glomerulosa cells.
    Rohács T; Tory K; Dobos A; Spät A
    Biochem J; 1997 Dec; 328 ( Pt 2)(Pt 2):525-8. PubMed ID: 9371711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of mitochondrial potential in control of calcium signals involved in cell proliferation.
    Valero RA; Senovilla L; Núñez L; Villalobos C
    Cell Calcium; 2008 Sep; 44(3):259-69. PubMed ID: 18241916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring mitochondrial [Ca(2+)] dynamics with rhod-2, ratiometric pericam and aequorin.
    Fonteriz RI; de la Fuente S; Moreno A; Lobatón CD; Montero M; Alvarez J
    Cell Calcium; 2010 Jul; 48(1):61-9. PubMed ID: 20667591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glomerulosa cell--a unique sensor of extracellular K+ concentration.
    Spät A
    Mol Cell Endocrinol; 2004 Mar; 217(1-2):23-6. PubMed ID: 15134796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial Ca2+ flux through Na+/Ca2+ exchange.
    Kim B; Matsuoka S
    Ann N Y Acad Sci; 2007 Mar; 1099():507-11. PubMed ID: 17446494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria.
    Santos NA; Catão CS; Martins NM; Curti C; Bianchi ML; Santos AC
    Arch Toxicol; 2007 Jul; 81(7):495-504. PubMed ID: 17216432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial free [Ca2+] levels and the permeability transition.
    Vay L; Hernández-SanMiguel E; Lobatón CD; Moreno A; Montero M; Alvarez J
    Cell Calcium; 2009 Mar; 45(3):243-50. PubMed ID: 19100620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial matrix calcium is an activating signal for hormone secretion.
    Wiederkehr A; Szanda G; Akhmedov D; Mataki C; Heizmann CW; Schoonjans K; Pozzan T; Spät A; Wollheim CB
    Cell Metab; 2011 May; 13(5):601-11. PubMed ID: 21531342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes.
    Belmonte S; Morad M
    Ann N Y Acad Sci; 2008 Mar; 1123():58-63. PubMed ID: 18375577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial Ca2+ flux is a critical determinant of the Ca2+ dependence of mast cell degranulation.
    Suzuki Y; Yoshimaru T; Inoue T; Ra C
    J Leukoc Biol; 2006 Mar; 79(3):508-18. PubMed ID: 16365155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.