BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 11969423)

  • 1. Identification of potential physiological activators of protein phosphatase 5.
    Ramsey AJ; Chinkers M
    Biochemistry; 2002 Apr; 41(17):5625-32. PubMed ID: 11969423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation.
    Kang H; Sayner SL; Gross KL; Russell LC; Chinkers M
    Biochemistry; 2001 Sep; 40(35):10485-90. PubMed ID: 11523989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of chaulmoogric acid as a small molecule activator of protein phosphatase 5.
    Cher C; Tremblay MH; Barber JR; Chung Ng S; Zhang B
    Appl Biochem Biotechnol; 2010 Mar; 160(5):1450-9. PubMed ID: 19404779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective activators of protein phosphatase 5 target the auto-inhibitory mechanism.
    Haslbeck V; Drazic A; Eckl JM; Alte F; Helmuth M; Popowicz G; Schmidt W; Braun F; Weiwad M; Fischer G; Gemmecker G; Sattler M; Striggow F; Groll M; Richter K
    Biosci Rep; 2015 Apr; 35(3):. PubMed ID: 26182372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel tetratricopeptide repeat (TPR) containing PP5 serine/threonine protein phosphatase in the malaria parasite, Plasmodium falciparum.
    Dobson S; Kar B; Kumar R; Adams B; Barik S
    BMC Microbiol; 2001; 1():31. PubMed ID: 11737864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that protein phosphatase 5 functions to negatively modulate the maturation of the Hsp90-dependent heme-regulated eIF2alpha kinase.
    Shao J; Hartson SD; Matts RL
    Biochemistry; 2002 May; 41(21):6770-9. PubMed ID: 12022881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5.
    Yang J; Roe SM; Cliff MJ; Williams MA; Ladbury JE; Cohen PT; Barford D
    EMBO J; 2005 Jan; 24(1):1-10. PubMed ID: 15577939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of protein phosphatase 5 by limited proteolysis or the binding of polyunsaturated fatty acids to the TPR domain.
    Chen MX; Cohen PT
    FEBS Lett; 1997 Jan; 400(1):136-40. PubMed ID: 9000529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suramin is a novel activator of PP5 and biphasically modulates S100-activated PP5 activity.
    Yamaguchi F; Yamamura S; Shimamoto S; Tokumitsu H; Tokuda M; Kobayashi R
    Appl Biochem Biotechnol; 2014 Jan; 172(1):237-47. PubMed ID: 24068474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein phosphatase 5 is a major component of glucocorticoid receptor.hsp90 complexes with properties of an FK506-binding immunophilin.
    Silverstein AM; Galigniana MD; Chen MS; Owens-Grillo JK; Chinkers M; Pratt WB
    J Biol Chem; 1997 Jun; 272(26):16224-30. PubMed ID: 9195923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the tetratricopeptide-containing domain of BUB1, BUBR1, and PP5 proves that domain amphiphilicity over amino acid sequence specificity governs protein adsorption and interfacial activity.
    Beaufils S; Grossmann JG; Renault A; Bolanos-Garcia VM
    J Phys Chem B; 2008 Jul; 112(27):7984-91. PubMed ID: 18547097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of apoptosis signal-regulating kinase 1 (ASK1) by polyamine levels via protein phosphatase 5.
    Kutuzov MA; Andreeva AV; Voyno-Yasenetskaya TA
    J Biol Chem; 2005 Jul; 280(27):25388-95. PubMed ID: 15890660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Saccharomyces cerevisiae protein Ser/Thr phosphatase T1 and comparison to its mammalian homolog PP5.
    Jeong JY; Johns J; Sinclair C; Park JM; Rossie S
    BMC Cell Biol; 2003 Mar; 4():3. PubMed ID: 12694636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tetratricopeptide repeat domain of protein phosphatase 5 mediates binding to glucocorticoid receptor heterocomplexes and acts as a dominant negative mutant.
    Chen MS; Silverstein AM; Pratt WB; Chinkers M
    J Biol Chem; 1996 Dec; 271(50):32315-20. PubMed ID: 8943293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90.
    Ramsey AJ; Russell LC; Whitt SR; Chinkers M
    J Biol Chem; 2000 Jun; 275(23):17857-62. PubMed ID: 10751404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock protein-90 (Hsp90) acts as a repressor of peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARbeta activity.
    Sumanasekera WK; Tien ES; Davis JW; Turpey R; Perdew GH; Vanden Heuvel JP
    Biochemistry; 2003 Sep; 42(36):10726-35. PubMed ID: 12962497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rac GTPase signaling through the PP5 protein phosphatase.
    Gentile S; Darden T; Erxleben C; Romeo C; Russo A; Martin N; Rossie S; Armstrong DL
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5202-6. PubMed ID: 16549782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional basis of protein phosphatase 5 substrate specificity.
    Oberoi J; Dunn DM; Woodford MR; Mariotti L; Schulman J; Bourboulia D; Mollapour M; Vaughan CK
    Proc Natl Acad Sci U S A; 2016 Aug; 113(32):9009-14. PubMed ID: 27466404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. S100 proteins modulate protein phosphatase 5 function: a link between CA2+ signal transduction and protein dephosphorylation.
    Yamaguchi F; Umeda Y; Shimamoto S; Tsuchiya M; Tokumitsu H; Tokuda M; Kobayashi R
    J Biol Chem; 2012 Apr; 287(17):13787-98. PubMed ID: 22399290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the role of active site Mn
    Wang L; Yan F
    Biochem Biophys Res Commun; 2019 Apr; 511(3):612-618. PubMed ID: 30826056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.