These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11969432)

  • 1. Effect of angular momentum conservation in the phase transitions of collapsing systems.
    Laliena V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt A):4786-94. PubMed ID: 11969432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of angular momentum on equilibrium properties of a self-gravitating system.
    Fliegans O; Gross DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046143. PubMed ID: 12005962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcanonical mean-field thermodynamics of self-gravitating and rotating systems.
    Votyakov EV; Hidmi HI; De Martino A; Gross DH
    Phys Rev Lett; 2002 Jul; 89(3):031101. PubMed ID: 12144383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotation-induced phase transition in a spherical gravitating system.
    Klinko P; Miller BN; Prokhorenkov I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066131. PubMed ID: 11415197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of translational and angular momentum conservation on energy equipartition in microcanonical equilibrium in small clusters.
    Niiyama T; Shimizu Y; Kobayashi TR; Okushima T; Ikeda KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051101. PubMed ID: 19518410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The microcanonical thermodynamics of finite systems: the microscopic origin of condensation and phase separations, and the conditions for heat flow from lower to higher temperatures.
    Gross DH; Kenney JF
    J Chem Phys; 2005 Jun; 122(22):224111. PubMed ID: 15974655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-gravitating Brownian systems and bacterial populations with two or more types of particles.
    Sopik J; Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026105. PubMed ID: 16196642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics and Monte Carlo simulations in the microcanonical ensemble: Quantitative comparison and reweighting techniques.
    Schierz P; Zierenberg J; Janke W
    J Chem Phys; 2015 Oct; 143(13):134114. PubMed ID: 26450299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase transitions in self-gravitating systems: self-gravitating fermions and hard-sphere models.
    Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056123. PubMed ID: 12059663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcanonical analyses of peptide aggregation processes.
    Junghans C; Bachmann M; Janke W
    Phys Rev Lett; 2006 Nov; 97(21):218103. PubMed ID: 17155776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of peptide aggregation processes: an analysis from perspectives of three statistical ensembles.
    Junghans C; Bachmann M; Janke W
    J Chem Phys; 2008 Feb; 128(8):085103. PubMed ID: 18315086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase transitions in self-gravitating systems and bacterial populations surrounding a central body.
    Chavanis PH; Sopik J; Sire C
    Phys Rev E; 2024 Jan; 109(1-1):014118. PubMed ID: 38366534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binaries and core-ring structures in self-gravitating systems.
    Ispolatov I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026115. PubMed ID: 16196652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of self-gravitating systems with softened potentials.
    Follana E; Laliena V
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6270-7. PubMed ID: 11088300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions.
    Sire C; Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046133. PubMed ID: 12443285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of the self-gravitating ring model.
    Tatekawa T; Bouchet F; Dauxois T; Ruffo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056111. PubMed ID: 16089606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From thermal to excited-state quantum phase transition: The Dicke model.
    Pérez-Fernández P; Relaño A
    Phys Rev E; 2017 Jul; 96(1-1):012121. PubMed ID: 29347062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collapses and explosions in self-gravitating systems.
    Ispolatov I; Karttunen M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036117. PubMed ID: 14524842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of angular momentum conservation in unimolecular translational energy release: validity of the orbiting transition state theory.
    Gridelet E; Lorquet JC; Leyh B
    J Chem Phys; 2005 Mar; 122(9):094106. PubMed ID: 15836111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transitions in self-gravitating systems and bacterial populations with a screened attractive potential.
    Chavanis PH; Delfini L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051103. PubMed ID: 20866181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.